网站导航
老地方 > 百科 > 教学教案 > 正文

一次函数课件

2026/02/20教学教案

老地方整理的一次函数课件(精选4篇),希望这些优秀内容,能够帮助到大家。

一次函数课件 篇1

教材分析

课程标准的描述

要求学生明确确定一次函数需要两个条件,确定正比例函数需要一个条件;会用待定系数法求一次函数的解析式,并使学生初步形成数形结合的思想;

教学内容分析

通过例4,介绍了用待定系数法求一次函数的解析式的基本步骤,并明确待定系数法的用途和目的,进而形成数形结合的思想;

前面学生一直学习的是已知函数的解析式,然后研究函数的图象和性质,是从数到形的过程;从这一节课开始,学生反过来学习从形到数,并且在后面的学习中也经常用到数形结合的思想,所以这节课是整个学生的一种逆向思维的转折点,起着承上启下的作用,具有重要意义。

学情分析

教学对象分析

1.本班学生对于一次函数的图像和性质掌握的比较好,能通过解析式画出函数图象,通过图象判断k和b的符号,会用待定系数法计算简单的正比例函数的解析式,但求解二元一次方程组还有一定的困难,而利用待定系数法求一次函数的解析式,由于两个式子相减,b就可以抵消,所以计算问题不会很大。另外,学生在练习的过程中,对新题型比较陌生,特别是没有直接给出点或者没有说求函数解析式,这样的题学生掌握的不够好。

2.学生已经学过解二元一次方程组,并会求正比例函数的解析式,初步认识过待定系数法,以前也接触过数形结合的思想。在此基础上,可以先让学生知道什么是待定系数法,怎样去用,具体步骤有哪些,进而体会数形结合的思想,然后举例说明从数到形和从形到数的相互渗透。

3.如何根据所给的信息找到条件,确定一次函数的`解析式,是学生学习的障碍,对于这个问题,主要利用四种题型(图象、列表、交点、实际应用)和学生一起探寻条件(主要是找两个点),从而突破这个障碍。

教学目标

1、理解待定系数法,并会用待定系数法求一次函数的解析式;

2、能结合一次函数的图象和性质,灵活运用待定系数法求一次函数解析式;

3、能根据函数图象确定一次函数的表达式,并由此进一步体会数形结合的思想;

4、通过引入待定系数法的过程,向学生渗透转化的思想,培养学生分析问题,解决问题的能力

教学重点和难点

项 目

内 容

解 决 措 施

教学重点

利用待定系数法求一次函数的解析式

强调用待定系数法求一次函数解析式的步骤

教学难点

培养数形结合分析问题和解决问题的能力

指导学生从题目中找出两个条件

教学策略

教学策略的简要阐述

通过讲授不同题型,从浅入深掌握待定系数法求一次函数解析式的四个步骤。

教学过程也是学生的认知过程,只有学生积极地参与教学活动才能收到良好的效果。因此,本课采用启发诱导、实例探究、讲练结合的教学方法,揭示知识的发生和形成过程。先“引导发现”,后“讲评点拨”,再加上多媒体的运用,使学生真正成为学习的主体。

教学过程

课堂教学过程设计

教学环节

教师活动

学生活动

设计意图、依据

复习

出了一组关于一次函数解析式、图象及性质的填空题。

一、温故知新:

1、在函数y=2x中,函数y随自变量x的增大__________。

2、已知一次函数y=2x+4的图像经过点(m,8),则m=________。

3、一次函数y=-2x+1的图象经过第 象限,y随着x的增大而 ; y=2x -1图象经过第 象限,y随着x的增大而。

4、若一次函数y=x+b的图象过点A(1,-1),则b=________

5、已知一次函数y=kx+5过点P(-1,2),则k=_____

大部分同学很快就完成,一小组同学轮流说答案并简单讲解。

复习一次函数的图象和性质,并初步体会从数到形的思想

创设情景,提出问题

让学生画出y=2x和y=x+3的图象,并思考“你在作这两个函数图象时,分别描了几个点?你能否通过取直线上的这两个点来求这条直线的解析式呢”

接着让学生完成:

已知:一次函数y=kx+b当x=1时y的值为2,当x=2时y的值为5,求k和b.

解:把x=1,y=2;x=2,y=5分别代入函数y=kx+b得:

解得:

学生通过画图象确定“两点确定一条直线”,即求一次函数解析式需要两个条件,求出k和b即可。

激发学生学习的兴趣,培养学生分析问题的能力。通过填空题的形式,初步体会列二元一次方程组求k和b的值。

讲授例题

以教材例4为主,讲授待定系数法的四个步骤,如何利用待定系数法求函数的解析式,如何找到两个点,并总结归纳什么是待定系数法。

例:已知一次函数的图象经过点(3,5)与(-4,-9). 求这个一次函数的解析式.

待定系数法:______________________________________________________________

你能归纳出待定系数法求函数解析式的基本步骤吗?

(1)_______________(2)_______________(3)_______________(4)____________

学生能根据给的两个点的坐标代到一次函数的解析式,并且解出二元一次方程组,求出k和b,知道求一次函数的解析式,只需要求出k和b,也就是需要找两个条件,实质上就是找两个点。

通过例题使学生形成完整的利用待定系数法求函数解析式的步骤。

提出问题,形成思路

出示四种题型:图象、表格、两点的坐标、实际应用,分别用待定系数法求一次函数的解析式。

图象的学生基本能求出,会找两个点;对于利用表格信息确定函数解析式,学生不知道是求函数的解析式;实际应用问题,学生分析问题能力较差,但基本上能找到两个条件。

加深对待定系数法的理解,加强分析问题并解决问题的能力。

课堂小结

1、待定系数法求一次函数的解析式的步骤;

2、数形结合的思想:从数到形和从形到数的思路。

学生基本能说出这节课学习的主要内容,对于数形结合的思想,学生基本能理解。

复习巩固所学知识,体会数形结合的思想。

小试身手

设计了一组从浅入深的题目,巩固本节课的内容。

由于时间关系,只完成了3题。

深化巩固所学知识,并能有所拓展提高。

板书设计

用待定系数法求一次函数的解析式

例、解:设这个一次函数的解析式为:y=kx+b

∵y=kx+b的图象过点(3,5)与(-4,-9).

3k+b=5

-4k+b=-9

解方程组得

K=2

b=-1

这个一次函数的解析式为:y=2x-1

用待定系数法求函数解析式的步骤:

1、设

2、代

3、解

4、写

教学

特色

教学特色

及时肯定学生和营造鼓励学生的氛围,激发学生学习的兴趣,积极参与课堂,自觉学习和思考。

利用多媒体辅助教学,增强直观性,提高学习效率和质量,增大教学容量,激发学生兴趣,调动积极性。

问题式教学, 互动式教学引导学生学会探究、学会合作、学会学习、学会体验。

设置了学案,让学生对教学内容更容易掌握。

教学

反思

在导入新课时,通过一组练习,让学生清楚一次函数解析式或图象关键是k和b的确定。通过几种题型的练习,让学生思考和回答问题,令学生的数学语言概括能力,互助学习、合作学习的能力得到提高,因为之前学习了函数的图象和性质,学生的数形结合思想渗透也较好。反而,在教学过程中,特别是学生解二元一次方程组,本来说很简单的,但很多学生计算都出现了问题,所以在后面的教学中,要加强学生的计算能力。教学过程也是学生的认知过程,只有学生积极地参与教学活动才能收到良好的效果.因此,本课采用启发诱导、实例探究、讲练结合的教学方法,揭示知识的发生和形成过程。先“引导发现”,后“讲评点拨”,再加上多媒体的运用,使学生真正成为学习的主体。在课堂总结环节应逐步培养学生学会总结的意识和习惯。

但有些细节还没把握好,譬如小组交流探讨时间较短等等,希望以后的课堂能更好的培养学生的合作交流能力。

一次函数课件 篇2

教学内容:

一次函数

教学目标:

1、知识与技能:

掌握一次函数解析式的特点及意义;理解一次函数图象特征与解析式的联系规律。

2、过程与方法:

利用数形结合思想,进一步分析一次函数与正比例函数的联系,从而提高比较鉴别能力。

3、情感态度与价值观:

通过学习,培养学生独立思考、合作探究,科学的思维方法。

4、法制目标:

通过对新知的应用,向学生渗透《中华人民共和国环境保护法》提高学生对法律的认识。

教学重点:

1、一次函数解析式特点

2、一次函数图象特征与解析式联系规律。

教学难点:

一次函数图象特征与解析式的联系规律。

教学过程

一、提出问题,创设情境

问题:某登山队大本营所在地的气温为15℃,海拔每升高1km气温下降6℃.登山队员由大本营向上登高xkm时,他们所处位置的气温是y℃.试用解析式表示y?与x的关系。

分析:从大本营向上当海拔每升高1km时,气温从15℃就减少6℃,那么海拔增加xkm时,气温从15℃减少6x℃.因此y与x的函数关系式为:y=15-6x(x≥0)

当然,这个函数也可表示为:y=-6x+15(x≥0)

当登山队员由大本营向上登高0.5km时,他们所在位置气温就是x=0.5时函数y=-6x+15的值,即y=-6×0.5+15=12(℃)。

这个函数与我们上节所学的正比例函数有何不同?它的图象又具备什么特征?我们这节课将学习这些问题。

二、导入新课

1、合作探究:

我们先来研究下列变量间的对应关系可用怎样的函数表示?它们又有什么共同特点?

(1)、有人发现,在20~25℃时蟋蟀每分钟鸣叫次数c与温度t(℃)有关,即c?的值约是t的7倍与35的差。

(2)、一种计算成年人标准体重G(kg)的方法是,以厘米为单位量出身高值h减常数105,所得差是G的值。

(3)、某城市的市内电话的月收费额y(元)包括:月租费22元,拨打电话x分的计时费(按0.01元/分收取)。

(4)、把一个长10cm,宽5cm的矩形的长减少xcm,宽不变,矩形面积y(cm2)随x的值而变化。

通过思考分析,可以得到这些问题的函数解析式分别为:

(1)、c=7t-35。

(2)、G=h-105。

(3)、y=0.01x+22。

(4)、y=-5x+50。

2、归纳总结:

它们的形式与y=-6x+15一样,函数的形式都是自变量x的k倍与一个常数的和。

一般地,形如y=kx+b(k、b是常数,k≠0?)的函数,?叫做一次函数(?linearfunction).当b=0时,y=kx+b即y=kx.所以说正比例函数是一种特殊的一次函数。

3、新知应用:

某工厂生产某种产品,每件产品的出厂价为50元,其成本价为25元。在生产过程中,平均每生产一件产品就有0.5立方米污水排出,所以为了净化环境,工厂设计两种方案对污水进行处理,并准备实施。

方案一:工厂污水净化处理1立方米污水所用原材料费为2元,并且每月排污设备损耗费为30000元。

方案二:工厂将污水排到污水处理厂统一处理,每处理1立方米污水需要付14元的排污费。

问:

(1)设工厂每月X件件产品,每月利润为y元,分别求出依方案一和方案二处理污水时y与x的函数关系式。(利润=总收入—总支出)

(2)设工厂每月生产量为6000件产品时,你作为厂长在不污染环境,又节约资源的前提下应选用哪一种处理污水的`方案?请通过计算加以说明。

通过此题,可以向学生渗透《中华人民共和国环境保护法》中的第二十四条产生环境污染和其他公害的单位,必须把环境保护工作纳入计划,建立环境保护责任制度;采取有效措施,防治在生产建设或者其他活动中产生的废气、废水、废渣、粉尘、恶臭气体、放射性物质以及噪声振动、电磁波辐射等对环境的污染和危害。

第二十五条新建工业企业和现有工业企业的技术改造,应当采用资源利用率高、污染物排放量少的设备和工艺,采用经济合理的废弃物综合利用技术和污染物处理技术。第二十八条排放污染物超过国家或者地方规定的污染物排放标准的企业事业单位,依照国家规定缴纳超标准排污费,并负责治理。水污染防治法另有规定的,依照水污染防治法的规定执行。等内容,要求学生要保护环境。

三、课堂练习:

1、下列函数中哪些是一次函数,哪些又是正比例函数

8(1)y=-8x(2)y=(3)y=5x2+6(3)y=-0.5x-1

2、汽车油箱中原有油50升,如果行驶中每小时用油5升,求油箱中的油量y(升)随行驶时间x(时)变化的函数关系式,并写出自变量x的取值范围,y是x的一次函数吗?

四、课时小结

本节学习了一次函数的意义,知道了其解析式、图象特征,并学会了简单方

法画图象,进而利用数形结合的探究方法寻求出一次函数图象特征与解析式的联系,这使我们对一次函数知识的理解和掌握更透彻,也体会到数学思想在数学研究中的重要性

五、作业:

P120第9题。

一次函数课件 篇3

一、复习目标

知识目标:了解一次函数的概念,掌握一次函数的图象和性质;能正确画出一次函数的图象,并能根据图象探索函数的性质;能根据具体条件列出一次函数的关系式。

能力目标:理解数形结合的数学思想,强化数学的建模意识,提高利用演绎和归纳进行复习的能力。

情感目标:通过对零散知识点的系统整理,让学生认识到事物是有规律可循的,同时帮助他们提高复习的效果,增进数学学习的兴趣。

教学重点与难点

重点:根据不同条件求一次函数的解析式。

难点:根据函数图象探索其性质、体会函数与方程、函数与几何的转换。

教法与学法

教法分析:经过精心的整理,我把本单元的知识归纳成“六个知识要点”,采用的“演绎法”向学生传授。由于是复习课,我采用边讲边练和问题教学的方式。

学法指导:在这节课之前,我已经让全班同学拟定复习计划书,很多同学在计划书中都提出函数是难点,希望能多复习一点,我把这一信息反馈给班级,使全班同学都有一种意见得到尊重的满足感,并产生了强烈的主动求知欲望。另外,通过向学生展示我对本单元的归纳,培养学生自己动脑,自己归纳总结的能力,从而掌握一种良好的复习方法。

二、教学过程

(一)、知识回顾:由于是复习课,所以开门见山做课前练习。

(二)、提出“六个知识要点”:本单元的知识点比较繁多,而且在初中数学中所占的地位也比较重要。因此,我用“六点”来对于本单元进行复习:

知识点1、一般形式:

1、选择题:

分析:这类题目是考察同学们对函数解析式的特征的理解,在讲解时要突出两个疑难:一是一次函数中自变量的指数等于1,而不是0;二是一次函数解析式中自变量的系数不为零。

知识点2:直线与坐标的交点:函数y=kx+b图象与X轴交点是()

与Y轴交点是

知识点3:一次函数图像与特征:是指一次函数的图象在坐标系中的位置,直线经过的象限:一般的,一条直线都经过三个象限,由于新教材不注重k,b的符号决定直线经过的象限的理解,且加上我班学生的基础较差,成绩一般。而题目又往往出这种知识点,因此我把这个知识点编成顺口溜:“大大一二三,小小二三四,大小一三四,小大一二四”,意思是当k>0,b>0是,直线经过一二三象限,以此类推。(课件中以表格的形式向同学展示)同学们很容易记住并理解,举一些例子加以说明:

知识点4:求解析式:一般用特定系数法求函数的解析式,特定系数法的一般步骤是“设→代→解→答”。当然,在一些日常生活实际问题中,则可以根据题意直接列出解析式,这里应该说明:自变量的取值范围是函数解析式的一部分,但具体求法不作要求。

知识点5:求交点、求面积:指一次函数的图象与坐标轴的`交点坐标以及两直线交点坐标的求法。直线y=kx+b与x轴的交点坐标,与y轴的交点坐标是(0,b),这里要再次向学生解释一下,交点坐标是怎样得出来的。两条直线的交点坐标的求法:是将两直线的解析式联成一个二元一次方程组,解这个方程组,将它的解写成一个有序实数对,就是两直线的交点坐标。

求面积6:平移:

(三)、堂堂清:

(四)、小结:本节课归纳的“六个点”不是互相孤立,而是互相依托,互相渗透的,如求直线与坐标轴围成的直角三角形的面积时,需要先求出直线与坐标轴的交点坐标,求直线与坐标轴的交点坐标时,往往需要先求出直线的解析式。由此告诉同学们,只有将知识融会贯通,举一反三,才能学有所乐,学有所成。

(五)、布置作业:作业的布置应精心设计,体现分层教学和因材施教的原则。

1、必做题:配套的试卷1张。

2、选做题:课堂上布置的思考题。

一次函数课件 篇4

一、教学目标

知识与技能目标

1、继续巩固一次函数的作图方法;

2、结合一次函数的图像,掌握一次函数及其图像的简单性质。

过程与方法目标

1、经历对一次函数性质的探索过程,增强学生数形结合的意识,培养学生识图能力;

2、经历对一次函数性质的探索过程,培养学生的观察力、语言表达能力。

情感与态度目标

经历一次函数及性质的探索过程,在合作与交流活动中发展学生的合作意识和能力。

二、教材分析

本节通过对一次函数图像的研究,对一次函数的单调性作了探讨;对一次函数的几何意义也有涉及。在教学中要结合学生的认识情况,循序渐进,逐层深入,对教材内容可作适当增加,但不宜太难。

教学重点:结合一次函数的图像,研究一次函数的简单性质。

教学难点:一次函数性质的`应用。

三、学情分析

学生已经对一次函数的图像有了一定的认识,在此基础上,结合一次函数的图像,通过问题的设计,引导学生探讨一次函数的简单性质,学生是较容易掌握的。

四、教学过程

(一)做一做

在同一直角坐标系内分别作出一次函数y=2x+6,y=2x1,y=x+6,y=5x的图象。

(二)议一议

上述四个函数中,随着x值的增大,y的值分别如何变化?

学生:有的在增大,有的在减小。

师:哪些一次函数随x的增大y在增大;哪些一次函数随x的增大y在减小,是什么在影响这个变化?

学生讨论:y=2x+6和y=5x这两个一次函数在增大;y=2x1和y=x+6在减小;影响这个变化的是x前面的系数k的符号:当k为正数时,y随x的增大而增大;当k为负数时,y随x的增大而减小。

师:当k>0时,一次函数的图象经过哪些象限?

当k<0时,一次函数的图象经过哪些象限?