高一数学教案
老地方整理的高一数学教案(精选97篇),希望这些优秀内容,能够帮助到大家。
高一数学教案 篇1
一、教材
首先谈谈我对教材的理解,《两条直线平行与垂直的判定》是人教A版高中数学必修2第三章3.1.2的内容,本节课的内容是两条直线平行与垂直的判定的推导及其应用,学生对于直线平行和垂直的概念已经十分熟悉,并且在上节课学习了直线的倾斜角与斜率,为本节课的学习打下了基础。
二、学情
教材是我们教学的工具,是载体。但我们的教学是要面向学生的,高中学生本身身心已经趋于成熟,管理与教学难度较大,那么为了能够成为一个合格的高中教师,深入了解所面对的学生可以说是必修课。本阶段的学生思维能力已经非常成熟,能够有自己独立的思考,所以应该积极发挥这种优势,让学生独立思考探索。
三、教学目标
根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:
(一)知识与技能
掌握两条直线平行与垂直的'判定,能够根据其判定两条直线的位置关系。
(二)过程与方法
在经历两条直线平行与垂直的判定过程中,提升逻辑推理能力。
(三)情感态度价值观
在猜想论证的过程中,体会数学的严谨性。
四、教学重难点
我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的教学重点是:两条直线平行与垂直的判定。本节课的教学难点是:两条直线平行与垂直的判定的推导。
五、教法和学法
现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用讲授法、练习法、小组合作等教学方法。
六、教学过程
下面我将重点谈谈我对教学过程的设计。
(一)新课导入
首先是导入环节,那么我采用复习导入,回顾上节课所学的直线的倾斜角与斜率并顺势提问:能否通过直线的斜率,来判断两条直线的位置关系呢?
利用上节课所学的知识进行导入,很好的克服学生的畏难情绪。
(二)新知探索
接下来是教学中最重要的新知探索环节,我主要采用讲解法、小组合作、启发法等。
高一数学教案 篇2
一、教学目标
1.知识与技能
(1)解二分法求解方程的近似解的思想方法,会用二分法求解具体方程的近似解;
(2)体会程序化解决问题的思想,为算法的学习作准备。
2.过程与方法
(1)让学生在求解方程近似解的实例中感知二分发思想;
(2)让学生归纳整理本节所学的知识。
3.情感、态度与价值观
①体会二分法的程序化解决问题的思想,认识二分法的价值所在,使学生更加热爱数学;
②培养学生认真、耐心、严谨的数学品质。
二、 教学重点、难点
重点:用二分法求解函数f(x)的零点近似值的步骤。
难点:为何由︱a - b ︳< 便可判断零点的近似值为a(或b)?
三、 学法与教学用具
1.想-想。
2.教学用具:计算器。
四、教学设想
(一)、创设情景,揭示课题
提出问题:
(1)一元二次方程可以用公式求根,但是没有公式可以用来求解放程 ㏑x+2x-6=0的根;联系函数的零点与相应方程根的关系,能否利用函数的有关知识来求她的根呢?
(2)通过前面一节课的学习,函数f(x)=㏑x+2x-6在区间内有零点;进一步的问题是,如何找到这个零点呢?
(二)、研讨新知
一个直观的想法是:如果能够将零点所在的范围尽量的缩小,那么在一定的精确度的要求下,我们可以得到零点的近似值;为了方便,我们通过“取中点”的方法逐步缩小零点所在的范围。
取区间(2,3)的中点2.5,用计算器算得f(2.5)≈-0.084,因为f(2.5)xf(3)<0,所以零点在区间(2.5,3)内;
再取区间(2.5,3)的中点2.75,用计算器算得f(2.75)≈0.512,因为f(2.75)xf(2.5)<0,所以零点在(2.5,2.75)内;
由于(2,3),(2.5,3),(2.5,2.75)越来越小,所以零点所在范围确实越来越小了;重复上述步骤,那么零点所在范围会越来越小,这样在有限次重复相同的步骤后,在一定的精确度下,将所得到的零点所在区间上任意的一点作为零点的近似值,特别地可以将区间的端点作为零点的近似值。例如,当精确度为0.01时,由于∣2.5390625-2.53125∣=0.0078125<0.01,所以我们可以将x=2.54作为函数f(x)=㏑x+2x-6零点的近似值,也就是方程㏑x+2x-6=0近似值。
这种求零点近似值的方法叫做二分法。
1.师:引导学生仔细体会上边的这段文字,结合课本上的相关部分,感悟其中的思想方法.
生:认真理解二分法的函数思想,并根据课本上二分法的一般步骤,探索其求法。
2.为什么由︱a - b ︳<便可判断零点的.近似值为a(或b)?
先由学生思考几分钟,然后作如下说明:
设函数零点为x0,则a<x0<b,则:
0<x0-a<b-a,a-b<x0-b<0;
由于︱a - b ︳<,所以
︱x0 - a ︳<b-a<,︱x0 - b ︳<∣ a-b∣<,
即a或b 作为零点x0的近似值都达到了给定的精确度。
(三)、巩固深化,发展思维
1.学生在老师引导启发下完成下面的例题
例2.借助计算器用二分法求方程2x+3x=7的近似解(精确到0.01)
问题:原方程的近似解和哪个函数的零点是等价的?
师:引导学生在方程右边的常数移到左边,把左边的式子令为f(x),则原方程的解就是f(x)的零点。
生:借助计算机或计算器画出函数的图象,结合图象确定零点所在的区间,然后利用二分法求解.
(四)、归纳整理,整体认识
在师生的互动中,让学生了解或体会下列问题:
(1)本节我们学过哪些知识内容?
(2)你认为学习“二分法”有什么意义?
(3)在本节课的学习过程中,还有哪些不明白的地方?
(五)、布置作业
P92习题3.1A组第四题,第五题。
高一数学教案 篇3
1、教材(教学内容)
本课时主要研究任意角三角函数的定义。三角函数是一类重要的基本初等函数,是描述周期性现象的重要数学模型,本课时的内容具有承前启后的重要作用:承前是因为可以用函数的定义来抽象和规范三角函数的定义,同时也可以类比研究函数的模式和方法来研究三角函数;启后是指定义了三角函数之后,就可以进一步研究三角函数的性质及图象特征,并体会三角函数在解决具有周期性变化规律问题中的作用,从而更深入地领会数学在其它领域中的重要应用、
2、设计理念
本堂课采用“问题解决”教学模式,在课堂上既充分发挥学生的主体作用,又体现了教师的引导作用。整堂课先通过问题引导学生梳理已有的知识结构,展开合理的联想,提出整堂课要解决的中心问题:圆周运动等具周期性规律运动可以建立函数模型来刻画吗?从而引导学生带着问题阅读和钻研教材,引发认知冲突,再通过问题引导学生改造或重构已有的认知结构,并运用类比方法,形成“任意角三角函数的定义”这一新的概念,最后通过例题与练习,将任意角三角函数的定义,内化为学生新的认识结构,从而达成教学目标、
3、教学目标
知识与技能目标:形成并掌握任意角三角函数的定义,并学会运用这一定义,解决相关问题、
过程与方法目标:体会数学建模思想、类比思想和化归思想在数学新概念形成中的重要作用、
情感态度与价值观目标:引导学生学会阅读数学教材,学会发现和欣赏数学的理性之美、
4、重点难点
重点:任意角三角函数的定义、
难点:任意角三角函数这一概念的理解(函数模型的建立)、类比与化归思想的渗透、
5、学情分析
学生已有的认知结构:函数的概念、平面直角坐标系的概念、任意角和弧度制的相关概念、以直角三角形为载体的锐角三角函数的概念、在教学过程中,需要先将学生的以直角三角形为载体的锐角三角函数的概念改造为以象限角为载体的锐角三角函数,并形成以角的终边与单位园的交点的坐标来表示的锐角三角函数的概念,再拓展到任意角的三角函数的定义,从而使学生形成新的认知结构、
6、教法分析
“问题解决”教学法,是以问题为主线,引导和驱动学生的思维和学习活动,并通过问题,引导学生的质疑和讨论,充分展示学生的思维过程,最后在解决问题的过程中形成新的认知结构、这种教学模式能较好地体现课堂上老师的主导作用,也能充分发挥课堂上学生的主体作用、
7、学法分析
本课时先通过“阅读”学习法,引导学生改造已有的认知结构,再通过类比学习法引导学生形成“任意角的三角函数的定义”,最后引导学生运用类比学习法,来研究三角函数一些基本性质和符号问题,从而使学生形成新的认识结构,达成教学目标、
8、教学设计(过程)
一、引入
问题1:我们已经学过了任意角和弧度制,你对“角”这一概念印象最深的是什么?
问题2:研究“任意角”这一概念时,我们引进了平面直角坐标系,对平面直角坐标系,令你印象最深刻的是什么?
问题3:当角clipXimage002的终边在绕顶点O转动时,终边上的一个点P(x,y)必定随着终边绕顶点O作圆周运动,在这圆周运动中,有哪些数量?圆周运动的这些量之间的关系能用一个函数模型来刻画吗?
二、原有认知结构的改造和重构
问题4:当角clipXimage002[1]是锐角时,clipXimage004,线段OP的长度clipXimage006这几个量之间有何关系?
学生回答,分析结论,指出这种关系就是我们在初中学习过的锐角三角函数
学生阅读教材,并思考:
问题5:锐角三角函数是我们高中意义上的'函数吗?如何利用函数的定义来理解它?
学生讨论并回答
三、新概念的形成
问题6:如果我们将角度推广到任意角,我们能得到任意角的三角函数的定义吗?
学生回答,并阅读教材,得到任意角三角函数的定义、并思考:
问题7:任意角三角函数的定义符合我们高中所学的函数定义吗?
展示任意角三角函数的定义,并指出它是如何刻划圆周运动的
并类比函数的研究方法,得出任意角三角函数的定义域和值域。
四、概念的运用
1、基础练习
①口算clipXimage008的值、
②分别求clipXimage010的值
小结:ⅰ)画终边,求终边与单位圆交点的坐标,算比值
ⅱ)诱导公式(一)
③若clipXimage012,试写出角clipXimage002[2]的值。
④若clipXimage015,不求值,试判断clipXimage017的符号
⑤若clipXimage019,则clipXimage021为第象限的角、
例1、已知角clipXimage002[3]的终边过点clipXimage024,求clipXimage026之值
若P点的坐标变为clipXimage028,求clipXimage030的值
小结:任意角三角函数的等价定义(终边定义法)
例2、一物体A从点clipXimage032出发,在单位圆上沿逆时针方向作匀速圆周运动,若经过的弧长为clipXimage034,试用clipXimage034[1]表示物体A所在位置的坐标。若该物体作圆周运动的圆的半径变为clipXimage006[1],如何用clipXimage034[2]来表示物体A所在位置的坐标?
小结:可以采用三角函数模型来刻画圆周运动
五、拓展探究
问题8:当角clipXimage002[4]的终边绕顶点O作圆周运动时,角clipXimage002[5]的终边与单位圆的交点clipXimage039的坐标clipXimage041clipXimage043与角clipXimage002[6]之间还可以建立其它函数模型吗?
思考:引入平面直角坐标系后,我们可以把圆周运动用数来刻画,这是将“形”转化成为“数”;角clipXimage002[7]正弦值是一个数,你能借助平面直角坐标系和单位圆,用“形”来表示这个“数”吗?角clipXimage002[8]余弦值、正切值呢?
六、课堂小结
问题9:请你谈谈本节课的收获有哪些?
七、课后作业
教材P21第6、7、8题
高一数学教案 篇4
教学目标
1、应用正弦余弦定理解斜三角形应用题的一般步骤及基本思路
(1)分析,(2)建模,(3)求解,(4)检验;
2、实际问题中的有关术语、名称:
(1)仰角与俯角:均是指视线与水平线所成的角;
(2)方位角:是指从正北方向顺时针转到目标方向线的夹角;
(3)方向角:常见的如:正东方向、东南方向、北偏东、南偏西等;
3、用正弦余弦定理解实际问题的常见题型有:
测量距离、测量高度、测量角度、计算面积、航海问题、物理问题等;
教学重难点
1、应用正弦余弦定理解斜三角形应用题的一般步骤及基本思路
(1)分析,(2)建模,(3)求解,(4)检验;
2、实际问题中的有关术语、名称:
(1)仰角与俯角:均是指视线与水平线所成的角;
(2)方位角:是指从正北方向顺时针转到目标方向线的夹角;
(3)方向角:常见的如:正东方向、东南方向、北偏东、南偏西等;
3、用正弦余弦定理解实际问题的常见题型有:
测量距离、测量高度、测量角度、计算面积、航海问题、物理问题等;
教学过程
一、知识归纳
1、应用正弦余弦定理解斜三角形应用题的一般步骤及基本思路
(1)分析,(2)建模,(3)求解,(4)检验;
2、实际问题中的'有关术语、名称:
(1)仰角与俯角:均是指视线与水平线所成的角;
(2)方位角:是指从正北方向顺时针转到目标方向线的夹角;
(3)方向角:常见的如:正东方向、东南方向、北偏东、南偏西等;
3、用正弦余弦定理解实际问题的常见题型有:
测量距离、测量高度、测量角度、计算面积、航海问题、物理问题等;
二、例题讨论
一)利用方向角构造三角形
四)测量角度问题
例4、在一个特定时段内,以点E为中心的7海里以内海域被设为警戒水域.点E正北55海里处有一个雷达观测站A.某时刻测得一艘匀速直线行驶的船只位于点A北偏东。
高一数学教案 篇5
教材分析:函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想.
教学目的:
(1)通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;
(2)了解构成函数的要素;
(3)会求一些简单函数的定义域和值域;
(4)能够正确使用“区间”的符号表示某些函数的定义域;
教学重点:理解函数的模型化思想,用合与对应的语言来刻画函数;
教学难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;
教学过程:
一、引入课题
1.复习初中所学函数的概念,强调函数的模型化思想;
2.阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:
(1)炮弹的射高与时间的变化关系问题;
(2)南极臭氧空洞面积与时间的变化关系问题;
(3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题
备用实例:
我国xxxx年4月份非典疫情统计:
日期222324252627282930
新增确诊病例数1061058910311312698152101
3.引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;
4.根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.
二、新课教学
(一)函数的有关概念
1.函数的概念:
设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数(function).
记作:y=f(x),x∈A.
其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域(range).
注意:
○1“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;
○2函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.
2.构成函数的三要素:
定义域、对应关系和值域
3.区间的概念
(1)区间的分类:开区间、闭区间、半开半闭区间;
(2)无穷区间;
(3)区间的数轴表示.
4.一次函数、二次函数、反比例函数的定义域和值域讨论
(由学生完成,师生共同分析讲评)
(二)典型例题
1.求函数定义域
课本P20例1
解:(略)
说明:
○1函数的定义域通常由问题的实际背景确定,如果课前三个实例;
○2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;
○3函数的定义域、值域要写成集合或区间的形式.
巩固练习:课本P22第1题
2.判断两个函数是否为同一函数
课本P21例2
解:(略)
说明:
○1构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)
○2两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。
巩固练习:
○1课本P22第2题
○2判断下列函数f(x)与g(x)是否表示同一个函数,说明理由?
(1)f(x)=(x-1)0;g(x)=1
(2)f(x)=x;g(x)=
(3)f(x)=x2;f(x)=(x+1)2
(4)f(x)=|x|;g(x)=
(三)课堂练习
求下列函数的定义域
(1)
(2)
(3)
(4)
(5)
(6)
三、归纳小结,强化思想
从具体实例引入了函数的的概念,用集合与对应的语言描述了函数的定义及其相关概念,介绍了求函数定义域和判断同一函数的典型题目,引入了区间的概念来表示集合。
四、作业布置
课本P28习题1.2(A组)第1—7题(B组)第1题
高一数学教案 篇6
学习目标:
(1)理解函数的概念
(2)会用集合与对应语言来刻画函数,
(3)了解构成函数的要素。
重点:
函数概念的理解
难点:
函数符号y=f(x)的理解
知识梳理:
自学课本P29—P31,填充以下空格。
1、设集合A是一个非空的实数集,对于A内 ,按照确定的对应法则f,都有 与它对应,则这种对应关系叫做集合A上的一个函数,记作 。
2、对函数 ,其中x叫做 ,x的取值范围(数集A)叫做这个函数的 ,所有函数值的集合 叫做这个函数的 ,函数y=f(x) 也经常写为 。
3、因为函数的值域被 完全确定,所以确定一个函数只需要
。
4、依函数定义,要检验两个给定的变量之间是否存在函数关系,只要检验:
① ;② 。
5、设a, b是两个实数,且a
(1)满足不等式 的实数x的集合叫做闭区间,记作 。
(2)满足不等式a
(3)满足不等式 或 的实数x的集合叫做半开半闭区间,分别表示为 ;
分别满足x≥a,x>a,x≤a,x
其中实数a, b表示区间的两端点。
完成课本P33,练习A 1、2;练习B 1、2、3。
例题解析
题型一:函数的概念
例1:下图中可表示函数y=f(x)的图像的只可能是( )
练习:设M={x| },N={y| },给出下列四个图像,其中能表示从集合M到集合N的函数关系的有____个。
题型二:相同函数的判断问题
例2:已知下列四组函数:① 与y=1 ② 与y=x ③ 与
④ 与 其中表示同一函数的是( )
A. ② ③ B. ② ④ C. ① ④ D. ④
练习:已知下列四组函数,表示同一函数的是( )
A. 和 B. 和
C. 和 D. 和
题型三:函数的定义域和值域问题
例3:求函数f(x)= 的定义域
练习:课本P33练习A组 4.
例4:求函数 , ,在0,1,2处的函数值和值域。
当堂检测
1、下列各组函数中,表示同一个函数的是( A )
A、 B、
C、 D、
2、已知函数 满足f(1)=f(2)=0,则f(-1)的值是( C )
A、5 B、-5 C、6 D、-6
3、给出下列四个命题:
① 函数就是两个数集之间的对应关系;
② 若函数的定义域只含有一个元素,则值域也只含有一个元素;
③ 因为 的函数值不随 的变化而变化,所以 不是函数;
④ 定义域和对应关系确定后,函数的值域也就确定了.
其中正确的有( B )
A. 1 个 B. 2 个 C. 3个 D. 4 个
4、下列函数完全相同的是 ( D )
A. , B. ,
C. , D. ,
5、在下列四个图形中,不能表示函数的图象的是 ( B )
6、设 ,则 等于 ( D )
A. B. C. 1 D.0
7、已知函数 ,求 的值.( )
高一数学教案 篇7
教学目标:
(1)了解集合的表示方法;
(2)能正确选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;
教学重点:掌握集合的表示方法;
教学难点:选择恰当的表示方法;
教学过程:
一、复习回顾:
1.集合和元素的定义;元素的三个特性;元素与集合的关系;常用的数集及表示。
2.集合{1,2}、{(1,2)}、{(2,1)}、{2,1}的元素分别是什么?有何关系
二、新课教学
(一).集合的表示方法
我们可以用自然语言和图形语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。
(1) 列举法:把集合中的元素一一列举出来,并用花括号“ ”括起来表示集合的方法叫列举法。
如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…;
说明:1.集合中的元素具有无序性,所以用列举法表示集合时不必考
虑元素的顺序。
2.各个元素之间要用逗号隔开;
3.元素不能重复;
4.集合中的元素可以数,点,代数式等;
5.对于含有较多元素的集合,用列举法表示时,必须把元素间的规律显示清楚后方能用省略号,象自然数集N用列举法表示为
例1.(课本例1)用列举法表示下列集合:
(1)小于10的所有自然数组成的集合;
(2)方程x2=x的所有实数根组成的集合;
(3)由1到20以内的所有质数组成的集合;
(4)方程组 的解组成的集合。
思考2:(课本P4的思考题)得出描述法的定义:
(2)描述法:把集合中的元素的公共属性描述出来,写在花括号{ }内。
具体方法:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。
一般格式:
如:{x|x-3>2},{(x,y)|y=x2+1},{x|直角三角形},…;
说明:
1.课本P5最后一段话;
2.描述法表示集合应注意集合的代表元素,如{(x,y)|y= x2+3x+2}与 {y|y= x2+3x+2}是不同的两个集合,只要不引起误解,集合的代表元素也可省略,例如:{x|整数},即代表整数集Z。
辨析:这里的{ }已包含“所有”的`意思,所以不必写{全体整数}。下列写法{实数集},{R}也是错误的。
例2.(课本例2)试分别用列举法和描述法表示下列集合:
(1)方程x2—2=0的所有实数根组成的集合;
(2)由大于10小于20的所有整数组成的集合;
(3)方程组 的解。
思考3:(课本P6思考)
说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。
(二).课堂练习:
1.课本P6练习2;
2.用适当的方法表示集合:大于0的所有奇数
3.集合A={x| ∈Z,x∈N},则它的元素是 。
4.已知集合A={x|-3<x<3,x∈z},b={(x,y)|y=x p="" +1,x∈a},则集合b用列举法表示是<="">
归纳小结:
本节课从实例入手,介绍了集合的常用表示方法,包括列举法、描述法。
作业布置:
1. 习题1.1,第3.4题;
2. 课后预习集合间的基本关系.
高一数学教案 篇8
教学目标:①掌握对数函数的性质。
②应用对数函数的性质可以解决:对数的大小比较,求复
合函数的定义域、值 域及单调性。
③ 注重函数思想、等价转化、分类讨论等思想的渗透,提高
解题能力。
教学重点与难点:对数函数的性质的应用。
教学过程设计:
⒈复习提问:对数函数的概念及性质。
⒉开始正课
1 比较数的'大小
例 1 比较下列各组数的大小。
⑴loga5.1 ,loga5.9 (a>0,a≠1)
⑵log0.50.6 ,logЛ0.5 ,lnЛ
师:请同学们观察一下⑴中这两个对数有何特征?
生:这两个对数底相等。
师:那么对于两个底相等的对数如何比大小?
生:可构造一个以a为底的对数函数,用对数函数的单调性比大小。
师:对,请叙述一下这道题的解题过程。
生:对数函数的单调性取决于底的大小:当0
调递减,所以loga5.1>loga5.9 ;当a>1时,函数y=logax单调递
增,所以loga5.1
板书:
解:Ⅰ)当0
∵5.1loga5.9
Ⅱ)当a>1时,函数y=logax在(0,+∞)上是增函数,
∵5.1<5.9 ∴loga5.1
师:请同学们观察一下⑵中这三个对数有何特征?
生:这三个对数底、真数都不相等。
师:那么对于这三个对数如何比大小?
生:找“中间量”, log0.50.6>0,lnЛ>0,logЛ0.51,
log0.50.6<1,所以logЛ0.5< log0.50.6< lnЛ。
板书:略。
师:比较对数值的大小常用方法:①构造对数函数,直接利用对数函
数 的单调性比大小,②借用“中间量”间接比大小,③利用对数
函数图象的位置关系来比大小。
2 函数的定义域, 值 域及单调性。
高一数学教案 篇9
【摘要】鉴于大家对数学网十分关注,小编在此为大家整理了此文空间几何体的三视图和直观图高一数学教案,供大家参考!
本文题目:空间几何体的三视图和直观图高一数学教案
第一课时 1.2.1中心投影与平行投影 1.2.2空间几何体的三视图
教学要求:能画出简单几何体的三视图;能识别三视图所表示的空间几何体.
教学重点:画出三视图、识别三视图.
教学难点:识别三视图所表示的空间几何体.
教学过程:
一、新课导入:
1. 讨论:能否熟练画出上节所学习的几何体?工程师如何制作工程设计图纸?
2. 引入:从不同角度看庐山,有古诗:横看成岭侧成峰,远近高低各不同。不识庐山真面目,只缘身在此山中。 对于我们所学几何体,常用三视图和直观图来画在纸上.
三视图:观察者从不同位置观察同一个几何体,画出的空间几何体的图形;
直观图:观察者站在某一点观察几何体,画出的'空间几何体的图形.
用途:工程建设、机械制造、日常生活.
二、讲授新课:
1. 教学中心投影与平行投影:
① 投影法的提出:物体在光线的照射下,就会在地面或墙壁上产生影子。人们将这种自然现象加以科学的抽象,总结其中的规律,提出了投影的方法。
② 中心投影:光由一点向外散射形成的投影。其投影的大小随物体与投影中心间距离的变化而变化,所以其投影不能反映物体的实形.
③ 平行投影:在一束平行光线照射下形成的投影. 分正投影、斜投影.
讨论:点、线、三角形在平行投影后的结果.
2. 教学柱、锥、台、球的三视图:
定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图
讨论:三视图与平面图形的关系? 画出长方体的三视图,并讨论所反应的长、宽、高
结合球、圆柱、圆锥的模型,从正面(自前而后)、侧面(自左而右)、上面(自上而下)三个角度,分别观察,画出观察得出的各种结果. 正视图、侧视图、俯视图.
③ 试画出:棱柱、棱锥、棱台、圆台的三视图. (
④ 讨论:三视图,分别反应物体的哪些关系(上下、左右、前后)?哪些数量(长、宽、高)
正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;
俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;
侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。
⑤ 讨论:根据以上的三视图,如何逆向得到几何体的形状.
(试变化以上的三视图,说出相应几何体的摆放)
3. 教学简单组合体的三视图:
① 画出教材P16 图(2)、(3)、(4)的三视图.
② 从教材P16思考中三视图,说出几何体.
4. 练习:
① 画出正四棱锥的三视图.
画出右图所示几何体的三视图.
③ 右图是一个物体的正视图、左视图和俯视图,试描述该物体的形状.
5. 小结:投影法;三视图;顺与逆
三、巩固练习: 练习:教材P17 1、2、3、4
第二课时 1.2.3 空间几何体的直观图
教学要求:掌握斜二测画法;能用斜二测画法画空间几何体的直观图.
教学重点:画出直观图.
高一数学教案 篇10
一、教学目标
(1)了解含有“或”、“且”、“非”复合命题的概念及其构成形式;
(2)理解逻辑联结词“或”“且”“非”的含义;
(3)能用逻辑联结词和简单命题构成不同形式的复合命题;
(4)能识别复合命题中所用的逻辑联结词及其联结的简单命题;
(5)会用真值表判断相应的复合命题的真假;
(6)在知识学习的基础上,培养学生简单推理的技能.
二、教学重点难点:
重点是判断复合命题真假的方法;难点是对“或”的含义的理解.
三、教学过程
1.新课导入
在当今社会中,人们从事任何工作、学习,都离不开逻辑.具有一定逻辑知识是构成一个公民的文化素质的重要方面.数学的特点是逻辑性强,特别是进入高中以后,所学的教学比初中更强调逻辑性.如果不学习一定的逻辑知识,将会在我们学习的过程中不知不觉地经常犯逻辑性的错误.其实,同学们在初中已经开始接触一些简易逻辑的知识.
初一平面几何中曾学过命题,请同学们举一个命题的例子.(板书:命题.)
(从初中接触过的“命题”入手,提出问题,进而学习逻辑的有关知识.)
学生举例:平行四边形的对角线互相平. ……(1)
两直线平行,同位角相等.…………(2)
教师提问:“……相等的角是对顶角”是不是命题?……(3)
(同学议论结果,答案是肯定的.)
教师提问:什么是命题?
(学生进行回忆、思考.)
概念总结:对一件事情作出了判断的语句叫做命题.
(教师肯定了同学的回答,并作板书.)
由于判断有正确与错误之分,所以命题有真假之分,命题(1)、(2)是真命题,而(3)是假命题.
(教师利用投影片,和学生讨论以下问题.)
例1 判断以下各语句是不是命题,若是,判断其真假:
命题一定要对一件事情作出判断,(3)、(4)没有对一件事情作出判断,所以它们不是命题.
初中所学的命题概念涉及逻辑知识,我们今天开始要在初中学习的基础上,介绍简易逻辑的知识.
2.讲授新课
大家看课本(人教版,试验修订本,第一册(上))从第25页至26页例1前,并归纳一下这段内容主要讲了哪些问题?
(片刻后请同学举手回答,一共讲了四个问题.师生一道归纳如下.)
(1)什么叫做命题?
可以判断真假的语句叫做命题.
判断一个语句是不是命题,关键看这语句有没有对一件事情作出了判断,疑问句、祈使句都不是命题.有些语句中含有变量,如 x2-5x+6=0
中含有变量 ,在不给定变量的值之前,我们无法确定这语句的真假(这种含有变量的语句叫做“开语句”).
(2)介绍逻辑联结词“或”、“且”、“非”.
“或”、“且”、“非”这些词叫做逻辑联结词.逻辑联结词除这三种形式外,还有“若…则…”和“当且仅当”两种形式.
命题可分为简单命题和复合命题.
不含逻辑联结词的命题叫做简单命题.简单命题是不含其他命题作为其组成部分(在结构上不能再分解成其他命题)的命题.
由简单命题和逻辑联结词构成的命题叫做复合命题,如“6是自然数且是偶数”就是由简单命题“6是自然数”和“6是偶数”由逻辑联结词“且”构成的复合命题.
(4)命题的表示:用p ,q ,r ,s ,……来表示.
(教师根据学生回答的情况作补充和强调,特别是对复合命题的概念作出分析和展开.)
我们接触的'复合命题一般有“p 或q ”“p且q ”、“非p ”、“若p 则q ”等形式.
给出一个含有“或”、“且”、“非”的复合命题,应能说出构成它的简单命题和弄清它所用的逻辑联结词;应能根据所给出的两个简单命题,写出含有逻辑联结词“或”、“且”、“非”的复合命题.
对于给出“若p 则q ”形式的复合命题,应能找到条件p 和结论q .
在判断一个命题是简单命题还是复合命题时,不能只从字面上来看有没有“或”、“且”、“非”.例如命题“等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合”,此命题字面上无“且”;命题“5的倍数的末位数字不是0就是5”的字面上无“或”,但它们都是复合命题.
3.巩固新课
例2 判断下列命题,哪些是简单命题,哪些是复合命题.如果是复合命题,指出它的构成形式以及构成它的简单命题.
(1)5 ;
(2)0.5非整数;
(3)内错角相等,两直线平行;
(4)菱形的对角线互相垂直且平分;
(5)平行线不相交;
(6)若ab=0 ,则a=0 .
(让学生有充分的时间进行辨析.教材中对“若…则…”不作要求,教师可以根据学生的情况作些补充.)
高一数学教案 篇11
教学目标:
1、掌握对数的运算性质,并能理解推导这些法则的依据和过程;
2、能较熟练地运用法则解决问题;
教学重点:
对数的运算性质
教学过程:
一、问题情境:
1、指数幂的运算性质;
2、问题:对数运算也有相应的运算性质吗?
二、学生活动:
1、观察教材P59的表2—3—1,验证对数运算性质、
2、理解对数的运算性质、
3、证明对数性质、
三、建构数学:
1)引导学生验证对数的运算性质、
2)推导和证明对数运算性质、
3)运用对数运算性质解题、
探究:
①简易语言表达:“积的对数=对数的和”……
②有时逆向运用公式运算:如
③真数的取值范围必须是:不成立;不成立、
④注意:,
四、数学运用:
1、例题:
例1、(教材P60例4)求下列各式的值:
(1);(2)125;(3)(补充)lg、
例2、(教材P60例4)已知,,求下列各式的值(结果保留4位小数)
(1);(2)、
例3、用,,表示下列各式:
例4、计算:
(1);(2);(3)
2、练习:
P60(练习)1,2,4,5、
五、回顾小结:
本节课学习了以下内容:对数的运算法则,公式的逆向使用、
六、课外作业:
P63习题5
补充:
1、求下列各式的值:
(1)6—3;(2)lg5+lg2;(3)3+、
2、用lgx,lgy,lgz表示下列各式:
(1)lg(xyz);(2)lg;(3);(4)、
3、已知lg2=0、3010,lg3=0、4771,求下列各对数的值(精确到小数点后第四位)
(1)lg6;(2)lg;(3)lg;(4)lg32、
高一数学教案 篇12
一、教学目标
1.知识与技能:掌握画三视图的基本技能,丰富学生的空间想象力。
2.过程与方法:通过学生自己的亲身实践,动手作图,体会三视图的作用。
3.情感态度与价值观:提高学生空间想象力,体会三视图的作用。
二、教学重难点:
重点:画出简单几何体、简单组合体的三视图;
难点:识别三视图所表示的空间几何体。
三、学法指导:
观察、动手实践、讨论、类比。
四、教学过程
(一)创设情景,揭开课题
展示庐山的风景图——“横看成岭侧看成峰,远近高低各不同”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体。
(二)讲授新课
1、中心投影与平行投影:
中心投影:光由一点向外散射形成的投影;
平行投影:在一束平行光线照射下形成的投影。
正投影:在平行投影中,投影线正对着投影面。
2、三视图:
正视图:光线从几何体的前面向后面正投影,得到的投影图;
侧视图:光线从几何体的左面向右面正投影,得到的投影图;
俯视图:光线从几何体的上面向下面正投影,得到的投影图。
三视图:几何体的正视图、侧视图和俯视图统称为几何体的三视图。
三视图的画法规则:长对正,高平齐,宽相等。
长对正:正视图与俯视图的长相等,且相互对正;
高平齐:正视图与侧视图的高度相等,且相互对齐;
宽相等:俯视图与侧视图的宽度相等。
3、画长方体的三视图:
正视图、侧视图和俯视图分别是从几何体的正前方、正左方和正上方观察到有几何体的正投影图,它们都是平面图形。
长方体的三视图都是长方形,正视图和侧视图、侧视图和俯视图、俯视图和正视图都各有一条边长相等。
4、画圆柱、圆锥的三视图:
5、探究:画出底面是正方形,侧面是全等的三角形的棱锥的三视图。
(三)巩固练习
课本P15练习1、2;P20习题1.2[A组]2。
(四)归纳整理
请学生回顾发表如何作好空间几何体的三视图
(五)布置作业
课本P20习题1.2[A组]1。
高一数学教案 篇13
教学目标:
1.进一步理解对数函数的性质,能运用对数函数的相关性质解决对数型函数的常见问题.
2.培养学生数形结合的思想,以及分析推理的能力.
教学重点:
对数函数性质的应用.
教学难点:
对数函数的性质向对数型函数的演变延伸.
教学过程:
一、问题情境
1.复习对数函数的性质.
2.回答下列问题.
(1)函数y=log2x的值域是 ;
(2)函数y=log2x(x≥1)的值域是 ;
(3)函数y=log2x(0
3.情境问题.
函数y=log2(x2+2x+2)的定义域和值域分别如何求呢?
二、学生活动
探究完成情境问题.
三、数学运用
例1 求函数y=log2(x2+2x+2)的定义域和值域.
练习:
(1)已知函数y=log2x的值域是[-2,3],则x的范围是________________.
(2)函数 ,x(0,8]的值域是 .
(3)函数y=log (x2-6x+17)的值域 .
(4)函数 的值域是_______________.
例2 判断下列函数的奇偶性:
(1)f (x)=lg (2)f (x)=ln( -x)
例3 已知loga 0.75>1,试求实数a 取值范围.
例4 已知函数y=loga(1-ax)(a>0,a≠1).
(1)求函数的定义域与值域;
(2)求函数的单调区间.
练习:
1.下列函数(1) y=x-1;(2) y=log2(x-1);(3) y= ;(4)y=lnx,其中值域为R的有 (请写出所有正确结论的序号).
2.函数y=lg( -1)的图象关于 对称.
3.已知函数 (a>0,a≠1)的图象关于原点对称,那么实数m= .
4.求函数 ,其中x [ ,9]的值域.
四、要点归纳与方法小结
(1)借助于对数函数的性质研究对数型函数的定义域与值域;
(2)换元法;
(3)能画出较复杂函数的图象,根据图象研究函数的性质(数形结合).
五、作业
课本P70~71-4,5,10,11.
高一数学教案 篇14
一、教学目标
1.知识与技能
(1)解二分法求解方程的近似解的思想方法,会用二分法求解具体方程的近似解;
(2)体会程序化解决问题的思想,为算法的学习作准备。
2.过程与方法
(1)让学生在求解方程近似解的实例中感知二分发思想;
(2)让学生归纳整理本节所学的知识。
3.情感、态度与价值观
①体会二分法的程序化解决问题的思想,认识二分法的价值所在,使学生更加热爱数学;
②培养学生认真、耐心、严谨的数学品质。
二、 教学重点、难点
重点:用二分法求解函数f(x)的零点近似值的步骤。
难点:为何由︱a - b ︳< 便可判断零点的近似值为a(或b)?
三、 学法与教学用具
1.想-想。
2.教学用具:计算器。
四、教学设想
(一)、创设情景,揭示课题
提出问题:
(1)一元二次方程可以用公式求根,但是没有公式可以用来求解放程 ㏑x+2x-6=0的根;联系函数的零点与相应方程根的关系,能否利用函数的有关知识来求她的根呢?
(2)通过前面一节课的学习,函数f(x)=㏑x+2x-6在区间内有零点;进一步的问题是,如何找到这个零点呢?
(二)、研讨新知
一个直观的想法是:如果能够将零点所在的范围尽量的缩小,那么在一定的精确度的要求下,我们可以得到零点的近似值;为了方便,我们通过“取中点”的方法逐步缩小零点所在的范围。
取区间(2,3)的中点2.5,用计算器算得f(2.5)≈-0.084,因为f(2.5)xf(3)<0,所以零点在区间(2.5,3)内;
再取区间(2.5,3)的中点2.75,用计算器算得f(2.75)≈0.512,因为f(2.75)xf(2.5)<0,所以零点在(2.5,2.75)内;
由于(2,3),(2.5,3),(2.5,2.75)越来越小,所以零点所在范围确实越来越小了;重复上述步骤,那么零点所在范围会越来越小,这样在有限次重复相同的步骤后,在一定的精确度下,将所得到的零点所在区间上任意的一点作为零点的近似值,特别地可以将区间的端点作为零点的近似值。例如,当精确度为0.01时,由于∣2.5390625-2.53125∣=0.0078125<0.01,所以我们可以将x=2.54作为函数f(x)=㏑x+2x-6零点的近似值,也就是方程㏑x+2x-6=0近似值。
这种求零点近似值的方法叫做二分法。
1.师:引导学生仔细体会上边的这段文字,结合课本上的相关部分,感悟其中的思想方法.
生:认真理解二分法的函数思想,并根据课本上二分法的一般步骤,探索其求法。
2.为什么由︱a - b ︳<便可判断零点的近似值为a(或b)?
先由学生思考几分钟,然后作如下说明:
设函数零点为x0,则a<x0<b,则:
0<x0-a<b-a,a-b<x0-b<0;
由于︱a - b ︳<,所以
︱x0 - a ︳<b-a<,︱x0 - b ︳<∣ a-b∣<,
即a或b 作为零点x0的近似值都达到了给定的精确度。
(三)、巩固深化,发展思维
1.学生在老师引导启发下完成下面的例题
例2.借助计算器用二分法求方程2x+3x=7的近似解(精确到0.01)
问题:原方程的近似解和哪个函数的零点是等价的?
师:引导学生在方程右边的常数移到左边,把左边的式子令为f(x),则原方程的解就是f(x)的零点。
生:借助计算机或计算器画出函数的图象,结合图象确定零点所在的区间,然后利用二分法求解.
(四)、归纳整理,整体认识
在师生的互动中,让学生了解或体会下列问题:
(1)本节我们学过哪些知识内容?
(2)你认为学习“二分法”有什么意义?
(3)在本节课的学习过程中,还有哪些不明白的地方?
(五)、布置作业
P92习题3.1A组第四题,第五题。
高一数学教案 篇15
教学目标:
(1)了解集合的表示方法;
(2)能正确选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;
教学重点:掌握集合的表示方法;
教学难点:选择恰当的表示方法;
教学过程:
一、复习回顾:
1.集合和元素的定义;元素的三个特性;元素与集合的关系;常用的数集及表示。
2.集合{1,2}、{(1,2)}、{(2,1)}、{2,1}的元素分别是什么?有何关系
二、新课教学
(一).集合的表示方法
我们可以用自然语言和图形语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。
(1) 列举法:把集合中的元素一一列举出来,并用花括号“ ”括起来表示集合的方法叫列举法。
如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…;
说明:1.集合中的元素具有无序性,所以用列举法表示集合时不必考
虑元素的顺序。
2.各个元素之间要用逗号隔开;
3.元素不能重复;
4.集合中的元素可以数,点,代数式等;
5.对于含有较多元素的集合,用列举法表示时,必须把元素间的规律显示清楚后方能用省略号,象自然数集N用列举法表示为
例1.(课本例1)用列举法表示下列集合:
(1)小于10的所有自然数组成的集合;
(2)方程x2=x的所有实数根组成的集合;
(3)由1到20以内的所有质数组成的集合;
(4)方程组 的解组成的集合。
思考2:(课本P4的思考题)得出描述法的定义:
(2)描述法:把集合中的元素的公共属性描述出来,写在花括号{ }内。
具体方法:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。
一般格式:
如:{x|x-3>2},{(x,y)|y=x2+1},{x|直角三角形},…;
说明:
1.课本P5最后一段话;
2.描述法表示集合应注意集合的代表元素,如{(x,y)|y= x2+3x+2}与 {y|y= x2+3x+2}是不同的两个集合,只要不引起误解,集合的代表元素也可省略,例如:{x|整数},即代表整数集Z。
辨析:这里的{ }已包含“所有”的意思,所以不必写{全体整数}。下列写法{实数集},{R}也是错误的。
例2.(课本例2)试分别用列举法和描述法表示下列集合:
(1)方程x2—2=0的所有实数根组成的集合;
(2)由大于10小于20的所有整数组成的集合;
(3)方程组 的解。
思考3:(课本P6思考)
说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。
(二).课堂练习:
1.课本P6练习2;
2.用适当的方法表示集合:大于0的所有奇数
3.集合A={x| ∈Z,x∈N},则它的元素是 。
4.已知集合A={x|-3 归纳小结: 本节课从实例入手,介绍了集合的常用表示方法,包括列举法、描述法。 作业布置: 1. 习题1.1,第3.4题; 2. 课后预习集合间的基本关系. 人教版高一数学教案 作为一无名无私奉献的教育工作者,往往需要进行教案编写工作,教案是实施教学的主要依据,有着至关重要的作用。优秀的教案都具备一些什么特点呢?以下是小编为大家整理的人教版高一数学教案,希望能够帮助到大家。 第一节 集合的含义与表示 学时:1学时 [学习引导] 一、自主学习 1.阅读课本 . 2.回答问题: ⑴本节内容有哪些概念和知识点? ⑵尝试说出相关概念的含义? 3完成 练习 4小结 二、方法指导 1、要结合例子理解集合的概念,能说出常用的数集的名称和符号。 2、理解集合元素的特性,并会判断元素与集合的关系 3、掌握集合的表示方法,并会正确运用它们表示一些简单集合。 4、在学习中要特别注意理解空集的意义和记法 [思考引导] 一、提问题 1.集合中的元素有什么特点? 2、集合的常用表示法有哪些? 3、集合如何分类? 4.元素与集合具有什么关系?如何用数学语言表述? 5集合 和 是否相同? 二、变题目 1.下列各组对象不能构成集合的是( ) A.北京大学2008级新生 B.26个英文字母 C.著名的艺术家 D.2008年北京奥运会中所设定的比赛项目 2.下列语句:①0与 表示同一个集合; ②由1,2,3组成的集合可表示为 或 ; ③方程 的解集可表示为 ; ④集合 可以用列举法表示。 其中正确的是( ) A.①和④ B.②和③ C.② D.以上语句都不对 [总结引导] 1.集合中元素的三特性: 2.集合、元素、及其相互关系的数学符号语言的表示和理解: 3.空集的含义: [拓展引导] 1.课外作业: 习题11第 题; 2.若集合 ,求实数 的值; 3.若集合 只有一个元素,则实数 的值为 ;若 为空集,则 的取值范围是 . 撰稿:程晓杰 审稿:宋庆 一、学习目标: 知识与技能:理解直线与平面、平面与平面平行的性质定理的含义, 并会应用性质解决问题 过程与方法:能应用文字语言、符号语言、图形语言准确地描述直线与平面、平面与平面的性质定理 情感态度与价值观:通过自主学习、主动参与、积极探究的学习过程,激发学生学习数学的自信心和积极性,培养学生良好的思维习惯,渗透化归与转化的数学思想,体会事物之间相互转化和理论联系实际的辩证唯物主义思想方法 二、学习重、难点 学习重点: 直线与平面、平面与平面平行的性质及其应用 学习难点: 将空间问题转化为平面问题的方法, 三、学法指导及要求: 1、限定45分钟完成,注意逐字逐句仔细审题,认真思考、独立规范作答,不会的先绕过,做好记号。 2、把学案中自己易忘、易出错的知识点和疑难问题以及解题方法规律,及时整理在解题本,多复习记忆。3、A:自主学习;B:合作探究;C:能力提升4、小班、重点班完成全部,平行班完成A.B类题 四、知识链接: 1.空间直线与直线的位置关系 2.直线与平面的位置关系 3.平面与平面的位置关系 4.直线与平面平行的判定定理的符号表示 5.平面与平面平行的判定定理的符号表示 五、学习过程: A问题1: 1)如果一条直线与一个平面平行,那么这条直线与这个平面内的直线有哪些位置关系? (观察长方体) 2)如果一条直线和一个平面平行,如何在这个平面内做一条直线与已知直线平行? (可观察教室内灯管和地面) A问题2: 一条直线与平面平行,这条直线和这个平面内直线的位置关系有几种可能? A问题3:如果一条直线 与平面平行,在什么条件下直线 与平面内的直线平行呢? 由于直线 与平面内的任何直线无公共点,所以过直线 的某一平面,若与平面相交,则直线 就平行于这条交线 B自主探究1:已知: ∥, ,=b。求证: ∥b。 直线与平面平行的性质定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行 符号语言: 线面平行性质定理作用:证明两直线平行 思想:线面平行 线线平行 例1:有一块木料如图,已知棱BC平行于面AC(1)要经过木料表面ABCD 内的一点P和棱BC将木料锯开,应怎样画线?(2)所画的线和面AC有什么关系? 例2:已知平面外的两条平行直线中的一条平行于这个平面,求证:另一条也平行于这个平面。 问题5:两个平面平行,那么其中一个平面内的直线与另一平面有什么样的关系?两个平面平行,那么其中一个平面内的直线与另一平面内的直线有何关系? 自主探究2:如图,平面,,满足∥,=a,=b,求证:a∥b 平面与平面平行的`性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行 符号语言: 面面平行性质定理作用:证明两直线平行 思想:面面平行 线线平行 例3 求证:夹在两个平行平面间的平行线段相等 六、达标检测: A1.61页练习 A2.下列判断正确的是( ) A. ∥, ,则 ∥b B. =P,b ,则 与b不平行 C. ,则a∥ D. ∥,b∥,则 ∥b B3.直线 ∥平面,P,过点P平行于 的直线( ) A.只有一条,不在平面内 B.有无数条,不一定在内 C.只有一条,且在平面内 D.有无数条,一定在内 B4.下列命题错误的是 ( ) A. 平行于同一条直线的两个平面平行或相交 B. 平行于同一个平面的两个平面平行 C. 平行于同一条直线的两条直线平行 D. 平行于同一个平面的两条直线平行或相交 B5. 平行四边形EFGH的四个顶点E、F、G、H、分别在空间四边形ABCD的四条边AB、BC、CD、AD、上,又EF∥BD,则 ( ) A. EH∥BD,BD不平行与FG B. FG∥BD,EH不平行于BD C. EH∥BD,FG∥BD D. 以上都不对 B6.若直线 ∥b, ∥平面,则直线b与平面的位置关系是 B7一个平面上有两点到另一个平面的距离相等,则这两个平面 七、小结与反思: 第二十四教时 教材:倍角公式,推导和差化积及积化和差公式 目的:继续复习巩固倍角公式,加强对公式灵活运用的训练;同时,让学生推导出和差化积和积化和差公式,并对此有所了解。 过程: 一、 复习倍角公式、半角公式和万能公式的推导过程: 例一、 已知 , ,tan = ,tan = ,求2 + (《教学与测试》P115 例三) 解: 又∵tan2 0,tan 0 , 2 + = 例二、 已知sin cos = , ,求 和tan的值 解:∵sin cos = 化简得: ∵ 即 二、 积化和差公式的推导 sin( + ) + sin( ) = 2sincos sincos = [sin( + ) + sin( )] sin( + ) sin( ) = 2cossin cossin = [sin( + ) sin( )] cos( + ) + cos( ) = 2coscos coscos = [cos( + ) + cos( )] cos( + ) cos( ) = 2sinsin sinsin = [cos( + ) cos( )] 这套公式称为三角函数积化和差公式,熟悉结构,不要求记忆,它的`优点在于将积式化为和差,有利于简化计算。(在告知公式前提下) 例三、 求证:sin3sin3 + cos3cos3 = cos32 证:左边 = (sin3sin)sin2 + (cos3cos)cos2 = (cos4 cos2)sin2 + (cos4 + cos2)cos2 = cos4sin2 + cos2sin2 + cos4cos2 + cos2cos2 = cos4cos2 + cos2 = cos2(cos4 + 1) = cos22cos22 = cos32 = 右边 原式得证 三、 和差化积公式的推导 若令 + = , = ,则 , 代入得: 这套公式称为和差化积公式,其特点是同名的正(余)弦才能使用,它与积化和差公式相辅相成,配合使用。 例四、 已知cos cos = ,sin sin = ,求sin( + )的值 解:∵cos cos = , ① sin sin = , ② 四、 小结:和差化积,积化和差 五、 作业:《课课练》P3637 例题推荐 13 P3839 例题推荐 13 P40 例题推荐 13 学习是一个潜移默化、厚积薄发的过程。编辑老师编辑了高一数学教案:数列,希望对您有所帮助! 教学目标 1.使学生理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项. (1)理解数列是按一定顺序排成的一列数,其每一项是由其项数唯一确定的. (2)了解数列的各种表示方法,理解通项公式是数列第项与项数的关系式,能根据通项公式写出数列的前几项,并能根据给出的一个数列的前几项写出该数列的一个通项公式. (3)已知一个数列的递推公式及前若干项,便确定了数列,能用代入法写出数列的前几项. 2.通过对一列数的观察、归纳,写出符合条件的一个通项公式,培养学生的观察能力和抽象概括能力. 3.通过由求的过程,培养学生严谨的科学态度及良好的思维习惯. 教学建议 (1)为激发学生学习数列的兴趣,体会数列知识在实际生活中的作用,可由实际问题引入,从中抽象出数列要研究的问题,使学生对所要研究的内容心中有数,如书中所给的例子,还有物品堆放个数的计算等. (2)数列中蕴含的函数思想是研究数列的指导思想,应及早引导学生发现数列与函数的关系.在教学中强调数列的项是按一定顺序排列的,“次序”便是函数的自变量,相同的数组成的数列,次序不同则就是不同的数列.函数表示法有列表法、图象法、解析式法,类似地,数列就有列举法、图示法、通项公式法.由于数列的自变量为正整数,于是就有可能相邻的两项(或几项)有关系,从而数列就有其特殊的表示法——递推公式法. (3)由数列的通项公式写出数列的前几项是简单的代入法,教师应精心设计例题,使这一例题为写通项公式作一些准备,尤其是对程度差的学生,应多举几个例子,让学生观察归纳通项公式与各项的结构关系,尽量为写通项公式提供帮助. (4)由数列的前几项写出数列的一个通项公式使学生学习中的一个难点,要帮助学生分析各项中的结构特征(整式,分式,递增,递减,摆动等),由学生归纳一些规律性的结论,如正负相间用来调整等.如果学生一时不能写出通项公式,可让学生依据前几项的规律,猜想该数列的下一项或下几项的值,以便寻求项与项数的关系. (5)对每个数列都有求和问题,所以在本节课应补充数列前项和的概念,用表示的问题是重点问题,可先提出一个具体问题让学生分析与的关系,再由特殊到一般,研究其一般规律,并给出严格的推理证明(强调的表达式是分段的);之后再到特殊问题的解决,举例时要兼顾结果可合并及不可合并的情况. (6)给出一些简单数列的通项公式,可以求其最大项或最小项,又是函数思想与方法的体现,对程度好的学生应提出这一问题,学生运用函数知识是可以解决的. 上述提供的高一数学教案:数列希望能够符合大家的实际需要! 一、教材分析 本节课选自《普通高中课程标准数学教科书-必修1》(人教A版)《1.2.1函数的概念》共3课时,本节课是第1课时。 生活中的许多现象如物体运动,气温升降,投资理财等都可以用函数的模型来刻画,是我们更好地了解自己、认识世界和预测未来的重要工具。 函数是数学的重要的基础概念之一,是高等数学重多学科的基础概念和重要的研究对象。同时函数也是物理学等其他学科的重要基础知识和研究工具,教学内容中蕴涵着极其丰富的辩证思想。 二、学生学习情况分析 函数是中学数学的主体内容,学生在中学阶段对函数的认识分三个阶段: (一)初中从运动变化的角度来刻画函数,初步认识正比例、反比例、一次和二次函数; (二)高中用集合与对应的观点来刻画函数,研究函数的性质,学习典型的对、指、幂和三解函数; (三)高中用导数工具研究函数的单调性和最值。 1.有利条件 现代教育心理学的研究认为,有效的概念教学是建立在学生已有知识结构的基础上的,因此教师在设计教学的过程中必须注意在学生已有知识结构中寻找新概念的固着点,引导学生通过同化或顺应,掌握新概念,进而完善知识结构。 初中用运动变化的观点对函数进行定义的,它反映了历人们对它的一种认识,而且这个定义较为直观,易于接受,因此按照由浅入深、力求符合学生认知规律的内容编排原则,函数概念在初中介绍到这个程度是合适的。也为我们用集合与对应的观点研究函数打下了一定的基础。 2.不利条件 用集合与对应的观点来定义函数,形式和内容上都是比较抽象的,这对学生的理解能力是一个挑战,是本节课教学的一个不利条件。 三、教学目标分析 课标要求:通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域. 1.知识与能力目标: ⑴能从集合与对应的角度理解函数的概念,更要理解函数的本质属性; ⑵理解函数的三要素的含义及其相互关系; ⑶会求简单函数的定义域和值域 2.过程与方法目标: ⑴通过丰富实例,使学生建立起函数概念的背景,体会函数是描述变量之间依赖关系的`数学模型; ⑵在函数实例中,通过对关键词的强调和引导使学发现它们的共同特征,在此基础上再用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用. 3.情感、态度与价值观目标: 感受生活中的数学,感悟事物之间联系与变化的辩证唯物主义观点。 四、教学重点、难点分析 1.教学重点:对函数概念的理解,用集合与对应的语言来刻画函数; 重点依据:初中是从变量的角度来定义函数,高中是用集合与对应的语言来刻画函数。二者反映的本质是一致的,即“函数是一种对应关系”。但是,初中定义并未完全揭示出函数概念的本质,对y?1这样的函数用运动变化的观点也很难解释。在以函数为重要内容的高中阶段,课本应将函数定义为两个数集之间的一种对应关系,按照这种观点,使我们对函数概念有了更深一层的认识,也很容易说明y?1这函数表达式。因此,分析两种函数概念的关系,让学生融会贯通地理解函数的概念应为本节课的重点。 突出重点:重点的突出依赖于对函数概念本质属性的把握,使学生通过表面的语言描述抓住概念的精髓。 2.教学难点: 第一:从实际问题中提炼出抽象的概念; 第二:符号“y=f(x)”的含义的理解. 难点依据:数学语言的抽象概括难度较大,对符号y=f(x)的理解会受到以前知识的负迁移。 突破难点:难点的突破要依托丰富的实例,从集合与对应的角度恰当地引导,而对抽象符号的理解则要结合函数的三要素和小例子进行说明。 五、教法与学法分析 1.教法分析 本节课我主要采用教师导学法、知识迁移法和知识对比法,从学生熟悉的丰富实例出发,关注学生的原有的知识基础,注重概念的形成过程,从初中的函数概念自然过度到函数的近代定我。 2.学法分析 在教学过程中我注意在教学中引导学生用模型法分析函数问题、通过自主学习法总结“区间”的知识。 一、教材 首先谈谈我对教材的理解,《两条直线平行与垂直的判定》是人教A版高中数学必修2第三章3.1.2的内容,本节课的内容是两条直线平行与垂直的判定的推导及其应用,学生对于直线平行和垂直的概念已经十分熟悉,并且在上节课学习了直线的倾斜角与斜率,为本节课的学习打下了基础。 二、学情 教材是我们教学的工具,是载体。但我们的教学是要面向学生的,高中学生本身身心已经趋于成熟,管理与教学难度较大,那么为了能够成为一个合格的高中教师,深入了解所面对的学生可以说是必修课。本阶段的学生思维能力已经非常成熟,能够有自己独立的思考,所以应该积极发挥这种优势,让学生独立思考探索。 三、教学目标 根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标: (一)知识与技能 掌握两条直线平行与垂直的判定,能够根据其判定两条直线的位置关系。 (二)过程与方法 在经历两条直线平行与垂直的判定过程中,提升逻辑推理能力。 (三)情感态度价值观 在猜想论证的'过程中,体会数学的严谨性。 四、教学重难点 我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的教学重点是:两条直线平行与垂直的判定。本节课的教学难点是:两条直线平行与垂直的判定的推导。 五、教法和学法 现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用讲授法、练习法、小组合作等教学方法。 六、教学过程 下面我将重点谈谈我对教学过程的设计。 (一)新课导入 首先是导入环节,那么我采用复习导入,回顾上节课所学的直线的倾斜角与斜率并顺势提问:能否通过直线的斜率,来判断两条直线的位置关系呢? 利用上节课所学的知识进行导入,很好的克服学生的畏难情绪。 (二)新知探索 接下来是教学中最重要的新知探索环节,我主要采用讲解法、小组合作、启发法等。 学习目标 1.能根据抛物线的定义建立抛物线的标准方程; 2.会根据抛物线的标准方程写出其焦点坐标与准线方程; 3.会求抛物线的标准方程。 一、预习检查 1.完成下表: 标准方程 图形 焦点坐标 准线方程 开口方向 2.求抛物线的焦点坐标和准线方程. 3.求经过点的抛物线的标准方程. 二、问题探究 探究1:回顾抛物线的定义,依据定义,如何建立抛物线的标准方程? 探究2:方程是抛物线的标准方程吗?试将其与抛物线的标准方程辨析比较. 例1.已知抛物线的顶点在原点,对称轴为坐标轴,焦点在直线上,求抛物线的方程. 例2.已知抛物线的焦点在轴上,点是抛物线上的一点,到焦点的距离是5,求的值及抛物线的标准方程,准线方程. 例3.抛物线的顶点在原点,对称轴为轴,它与圆相交,公共弦的长为.求该抛物线的方程,并写出其焦点坐标与准线方程. 三、思维训练 1.在平面直角坐标系中,若抛物线上的.点到该抛物线的焦点的距离为6,则点的横坐标为. 2.抛物线的焦点到其准线的距离是. 3.设为抛物线的焦点,为该抛物线上三点,若,则=. 4.若抛物线上两点到焦点的距离和为5,则线段的中点到轴的距离是. 5.(理)已知抛物线,有一个内接直角三角形,直角顶点在原点,斜边长为,一直角边所在直线方程是,求此抛物线的方程。 四、课后巩固 1.抛物线的准线方程是. 2.抛物线上一点到焦点的距离为,则点到轴的距离为. 3.已知抛物线,焦点到准线的距离为,则. 4.经过点的抛物线的标准方程为. 5.顶点在原点,以双曲线的焦点为焦点的抛物线方程是. 6.抛物线的顶点在原点,以轴为对称轴,过焦点且倾斜角为的直线被抛物线所截得的弦长为8,求抛物线的方程. 7.若抛物线上有一点,其横坐标为,它到焦点的距离为10,求抛物线方程和点的坐标。 1、知识与技能 (1)掌握任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号); (2)理解任意角的三角函数不同的定义方法; (3)了解如何利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用正弦线、余弦线、正切线表示出来; (4)掌握并能初步运用公式一; (5)树立映射观点,正确理解三角函数是以实数为自变量的函数. 2、过程与方法 初中学过:锐角三角函数就是以锐角为自变量,以比值为函数值的函数.引导学生把这个定义推广到任意角,通过单位圆和角的终边,探讨任意角的三角函数值的求法,最终得到任意角三角函数的定义.根据角终边所在位置不同,分别探讨各三角函数的定义域以及这三种函数的值在各象限的符号.最后主要是借助有向线段进一步认识三角函数.讲解例题,总结方法,巩固练习. 3、情态与价值 任意角的三角函数可以有不同的定义方法,而且各种定义都有自己的特点.过去习惯于用角的终边上点的坐标的“比值”来定义,这种定义方法能够表现出从锐角三角函数到任意角的三角函数的推广,有利于引导学生从自己已有认知基础出发学习三角函数,但它对准确把握三角函数的本质有一定的不利影响,“从角的集合到比值的集合”的对应关系与学生熟悉的一般函数概念中的“数集到数集”的对应关系有冲突,而且“比值”需要通过运算才能得到,这与函数值是一个确定的实数也有不同,这些都会影响学生对三角函数概念的理解. 本节利用单位圆上点的`坐标定义任意角的正弦函数、余弦函数.这个定义清楚地表明了正弦、余弦函数中从自变量到函数值之间的对应关系,也表明了这两个函数之间的关系. 教学重难点 重点:任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);终边相同的角的同一三角函数值相等(公式一). 难点:任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);三角函数线的正确理解. [三维目标] 一、知识与技能: 1、巩固集合、子、交、并、补的概念、性质和记号及它们之间的关系 2、了解集合的运算包含了集合表示法之间的转化及数学解题的一般思想 3、了解集合元素个数问题的讨论说明 二、过程与方法 通过提问汇总练习提炼的形式来发掘学生学习方法 三、情感态度与价值观 培养学生系统化及创造性的'思维 [教学重点、难点]:会正确应用其概念和性质做题 [教 具]:多媒体、实物投影仪 [教学方法]:讲练结合法 [授课类型]:复习课 [课时安排]:1课时 [教学过程]:集合部分汇总 本单元主要介绍了以下三个问题: 1,集合的含义与特征 2,集合的表示与转化 3,集合的基本运算 一,集合的含义与表示(含分类) 1,具有共同特征的对象的全体,称一个集合 2,集合按元素的个数分为:有限集和无穷集两类 学习是一个潜移默化、厚积薄发的过程。编辑老师编辑了高一数学教案:数列,希望对您有所帮助! 教学目标 1.使学生理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项. (1)理解数列是按一定顺序排成的一列数,其每一项是由其项数唯一确定的. (2)了解数列的各种表示方法,理解通项公式是数列第项与项数的关系式,能根据通项公式写出数列的前几项,并能根据给出的一个数列的前几项写出该数列的一个通项公式. (3)已知一个数列的递推公式及前若干项,便确定了数列,能用代入法写出数列的前几项. 2.通过对一列数的观察、归纳,写出符合条件的一个通项公式,培养学生的观察能力和抽象概括能力. 3.通过由求的过程,培养学生严谨的科学态度及良好的思维习惯. 教学建议 (1)为激发学生学习数列的兴趣,体会数列知识在实际生活中的作用,可由实际问题引入,从中抽象出数列要研究的问题,使学生对所要研究的内容心中有数,如书中所给的例子,还有物品堆放个数的计算等. (2)数列中蕴含的函数思想是研究数列的指导思想,应及早引导学生发现数列与函数的关系.在教学中强调数列的项是按一定顺序排列的,“次序”便是函数的自变量,相同的数组成的数列,次序不同则就是不同的数列.函数表示法有列表法、图象法、解析式法,类似地,数列就有列举法、图示法、通项公式法.由于数列的自变量为正整数,于是就有可能相邻的两项(或几项)有关系,从而数列就有其特殊的表示法——递推公式法. (3)由数列的通项公式写出数列的前几项是简单的代入法,教师应精心设计例题,使这一例题为写通项公式作一些准备,尤其是对程度差的学生,应多举几个例子,让学生观察归纳通项公式与各项的结构关系,尽量为写通项公式提供帮助. (4)由数列的前几项写出数列的一个通项公式使学生学习中的一个难点,要帮助学生分析各项中的结构特征(整式,分式,递增,递减,摆动等),由学生归纳一些规律性的结论,如正负相间用来调整等.如果学生一时不能写出通项公式,可让学生依据前几项的规律,猜想该数列的下一项或下几项的值,以便寻求项与项数的.关系. (5)对每个数列都有求和问题,所以在本节课应补充数列前项和的概念,用表示的问题是重点问题,可先提出一个具体问题让学生分析与的关系,再由特殊到一般,研究其一般规律,并给出严格的推理证明(强调的表达式是分段的);之后再到特殊问题的解决,举例时要兼顾结果可合并及不可合并的情况. (6)给出一些简单数列的通项公式,可以求其最大项或最小项,又是函数思想与方法的体现,对程度好的学生应提出这一问题,学生运用函数知识是可以解决的. 上述提供的高一数学教案:数列希望能够符合大家的实际需要! 一、教学目标 1.知识与技能 (1)解二分法求解方程的近似解的思想方法,会用二分法求解具体方程的近似解; (2)体会程序化解决问题的思想,为算法的学习作准备。 2.过程与方法 (1)让学生在求解方程近似解的实例中感知二分发思想; (2)让学生归纳整理本节所学的知识。 3.情感、态度与价值观 ①体会二分法的程序化解决问题的思想,认识二分法的价值所在,使学生更加热爱数学; ②培养学生认真、耐心、严谨的数学品质。 二、 教学重点、难点 重点:用二分法求解函数f(x)的零点近似值的步骤。 难点:为何由︱a - b ︳< 便可判断零点的近似值为a(或b)? 三、 学法与教学用具 1.想-想。 2.教学用具:计算器。 四、教学设想 (一)、创设情景,揭示课题 提出问题: (1)一元二次方程可以用公式求根,但是没有公式可以用来求解放程 ㏑x+2x-6=0的根;联系函数的零点与相应方程根的关系,能否利用函数的有关知识来求她的根呢? (2)通过前面一节课的学习,函数f(x)=㏑x+2x-6在区间内有零点;进一步的问题是,如何找到这个零点呢? (二)、研讨新知 一个直观的想法是:如果能够将零点所在的范围尽量的缩小,那么在一定的精确度的要求下,我们可以得到零点的近似值;为了方便,我们通过“取中点”的方法逐步缩小零点所在的范围。 取区间(2,3)的中点2.5,用计算器算得f(2.5)≈-0.084,因为f(2.5)xf(3)<0,所以零点在区间(2.5,3)内; 再取区间(2.5,3)的中点2.75,用计算器算得f(2.75)≈0.512,因为f(2.75)xf(2.5)<0,所以零点在(2.5,2.75)内; 由于(2,3),(2.5,3),(2.5,2.75)越来越小,所以零点所在范围确实越来越小了;重复上述步骤,那么零点所在范围会越来越小,这样在有限次重复相同的步骤后,在一定的精确度下,将所得到的零点所在区间上任意的一点作为零点的近似值,特别地可以将区间的端点作为零点的近似值。例如,当精确度为0.01时,由于∣2.5390625-2.53125∣=0.0078125<0.01,所以我们可以将x=2.54作为函数f(x)=㏑x+2x-6零点的近似值,也就是方程㏑x+2x-6=0近似值。 这种求零点近似值的方法叫做二分法。 1.师:引导学生仔细体会上边的这段文字,结合课本上的相关部分,感悟其中的思想方法. 生:认真理解二分法的函数思想,并根据课本上二分法的一般步骤,探索其求法。 2.为什么由︱a - b ︳<便可判断零点的近似值为a(或b)? 先由学生思考几分钟,然后作如下说明: 设函数零点为x0,则a<x0<b,则: 0<x0-a<b-a,a-b<x0-b<0; 由于︱a - b ︳<,所以 ︱x0 - a ︳<b-a<,︱x0 - b ︳<∣ a-b∣<, 即a或b 作为零点x0的近似值都达到了给定的精确度。 (三)、巩固深化,发展思维 1.学生在老师引导启发下完成下面的例题 例2.借助计算器用二分法求方程2x+3x=7的近似解(精确到0.01) 问题:原方程的近似解和哪个函数的零点是等价的? 师:引导学生在方程右边的常数移到左边,把左边的式子令为f(x),则原方程的解就是f(x)的零点。 生:借助计算机或计算器画出函数的图象,结合图象确定零点所在的区间,然后利用二分法求解. (四)、归纳整理,整体认识 在师生的互动中,让学生了解或体会下列问题: (1)本节我们学过哪些知识内容? (2)你认为学习“二分法”有什么意义? (3)在本节课的学习过程中,还有哪些不明白的地方? (五)、布置作业 P92习题3.1A组第四题,第五题。 高一数学教案(集锦15篇) 作为一名教师,时常要开展教案准备工作,教案有助于顺利而有效地开展教学活动。快来参考教案是怎么写的吧!以下是小编帮大家整理的高一数学教案,希望对大家有所帮助。 一、教学目标 1、知识与技能 (1)通过实物操作,增强学生的直观感知。 (2)能根据几何结构特征对空间物体进行分类。 (3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。 (4)会表示有关于几何体以及柱、锥、台的分类。 2、过程与方法 (1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。 (2)让学生观察、讨论、归纳、概括所学的知识。 3、情感态度与价值观 (1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。 (2)培养学生的空间想象能力和抽象括能力。 二、教学重点、难点 重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。难点:柱、锥、台、球的结构特征的概括。 三、教学用具 (1)学法:观察、思考、交流、讨论、概括。 (2)实物模型、投影仪四、教学思路 (一)创设情景,揭示课题 1、教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。教师对学生的活动及时给予评价。 2、所举的建筑物基本上都是由这些几何体组合而成的`,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。 (二)、研探新知 1、引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。 2、观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么?它们的共同特点是什么? 3、组织学生分组讨论,每小组选出一名同学发表本组讨论结果。在此基础上得出棱柱的主要结构特征。 (1)有两个面互相平行; (2)其余各面都是平行四边形; (3)每相邻两上四边形的公共边互相平行。概括出棱柱的概念。 4、教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。 5、提出问题:各种这样的棱柱,主要有什么不同?可不可以根据不同对棱柱分类? 请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的? 6、以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。 7、让学生观察圆柱,并实物模型演示,如何得到圆柱,从而概括出圆标的概念以及相关的概念及圆柱的表示。 8、引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。 9、教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。 10、现实世界中,我们看到的物体大多由具有柱、锥、台、球等几何结构特征的物体组合而成。请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的? (三)质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。 1、有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明,如图) 2、棱柱的何两个平面都可以作为棱柱的底面吗? 3、课本P8,习题1.1 A组第1题。 4、圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转? 5、棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢? 四、巩固深化 练习:课本P7练习1、2(1)(2)课本P8习题1.1第2、3、4题五、归纳整理 由学生整理学习了哪些内容六、布置作业 课本P8练习题1.1 B组第1题 课外练习课本P8习题1.1 B组第2题 教学目标 1、使学生掌握指数函数的概念,图象和性质。 (1)能根据定义判断形如什么样的函数是指数函数,了解对底数的限制条件的合理性,明确指数函数的定义域。 (2)能在基本性质的指导下,用列表描点法画出指数函数的图象,能从数形两方面认识指数函数的性质。 (3)能利用指数函数的性质比较某些幂形数的大小,会利用指数函数的图象画出形如的图象。 2、通过对指数函数的概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合的思想方法。 3、通过对指数函数的研究,让学生认识到数学的应用价值,激发学生学习数学的兴趣。使学生善于从现实生活中数学的发现问题,解决问题。 教学建议 教材分析 (1)指数函数是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以指数函数应重点研究。 (2)本节的教学重点是在理解指数函数定义的基础上掌握指数函数的图象和性质。难点是对底数在和时,函数值变化情况的区分。 (3)指数函数是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从指数函数的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究。 教法建议 (1)关于指数函数的定义按照课本上说法它是一种形式定义即解析式的特征必须是的样子,不能有一点差异,诸如等都不是指数函数。 (2)对底数的限制条件的理解与认识也是认识指数函数的重要内容。如果有可能尽量让学生自己去研究对底数,指数都有什么限制要求,教师再给予补充或用具体例子加以说明,因为对这个条件的认识不仅关系到对指数函数的认识及性质的分类讨论,还关系到后面学习对数函数中底数的认识,所以一定要真正了解它的由来。 关于指数函数图象的绘制,虽然是用列表描点法,但在具体教学中应避免描点前的盲目列表计算,也应避免盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象。 教学目标:①掌握对数函数的性质。 ②应用对数函数的性质可以解决:对数的大小比较,求复 合函数的定义域、值 域及单调性。 ③ 注重函数思想、等价转化、分类讨论等思想的渗透,提高 解题能力。 教学重点与难点:对数函数的性质的应用。 教学过程设计: ⒈复习提问:对数函数的概念及性质。 ⒉开始正课 1 比较数的大小 例 1 比较下列各组数的大小。 ⑴loga5.1 ,loga5.9 (a>0,a≠1) ⑵log0.50.6 ,logЛ0.5 ,lnЛ 师:请同学们观察一下⑴中这两个对数有何特征? 生:这两个对数底相等。 师:那么对于两个底相等的对数如何比大小? 生:可构造一个以a为底的对数函数,用对数函数的单调性比大小。 师:对,请叙述一下这道题的解题过程。 生:对数函数的单调性取决于底的大小:当0 调递减,所以loga5.1>loga5.9 ;当a>1时,函数y=logax单调递 增,所以loga5.1 板书: 解:Ⅰ)当0 ∵5.1loga5.9 Ⅱ)当a>1时,函数y=logax在(0,+∞)上是增函数, ∵5.1<5.9 ∴loga5.1 师:请同学们观察一下⑵中这三个对数有何特征? 生:这三个对数底、真数都不相等。 师:那么对于这三个对数如何比大小? 生:找“中间量”, log0.50.6>0,lnЛ>0,logЛ0.51, log0.50.6<1,所以logЛ0.5< log0.50.6< lnЛ。 板书:略。 师:比较对数值的大小常用方法:①构造对数函数,直接利用对数函 数 的单调性比大小,②借用“中间量”间接比大小,③利用对数 函数图象的位置关系来比大小。 2 函数的定义域, 值 域及单调性。 高一数学教案通用15篇 作为一名教师,通常需要准备好一份教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。那么你有了解过教案吗?以下是小编为大家整理的高一数学教案,欢迎大家借鉴与参考,希望对大家有所帮助。 一、课标要求: 理解充分条件、必要条件与充要条件的意义,会判断充分条件、必要条件与充要条件. 二、知识与方法回顾: 1、充分条件、必要条件与充要条件的概念: 2、从逻辑推理关系上看充分不必要条件、必要不充分条件与充要条件: 3、从集合与集合之间关系上看充分条件、必要条件与充要条件: 4、特殊值法:判断充分条件与必要条件时,往往用特殊值法来否定结论 5、化归思想: 表示p等价于q,等价命题可以进行相互转化,当我们要证明p成立时,就可以转化为证明q成立; 这里要注意原命题 逆否命题、逆命题 否命题只是等价形式之一,对于条件或结论是不等式关系(否定式)的命题一般应用化归思想. 6、数形结合思想: 利用韦恩图(即集合的包含关系)来判断充分不必要条件,必要不充分条件,充要条件. 三、基础训练: 1、 设命题若p则q为假,而若q则p为真,则p是q的 ( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 2、 设集合M,N为是全集U的两个子集,则 是 的 ( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 3、 若 是实数,则 是 的 ( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 四、例题讲解 例1 已知实系数一元二次方程 ,下列结论中正确的是 ( ) (1) 是这个方程有实根的充分不必要条件 (2) 是这个方程有实根的必要不充分条件 (3) 是这个方程有实根的充要条件 (4) 是这个方程有实根的充分不必要条件 A.(1)(3) B.(3)(4) C.(1)(3)(4) D.(2)(3)(4) 例2 (1)已知h 0,a,bR,设命题甲: ,命题乙: 且 ,问甲是乙的' ( ) (2)已知p:两条直线的斜率互为负倒数,q:两条直线互相垂直,则p是q的 ( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 变式:a = 0是直线 与 平行的 条件; 例3 如果命题p、q都是命题r的必要条件,命题s是命题r的充分条件,命题q是命题s 的充分条件,那么命题p是命题q的 条件;命题s是命题q的 条件;命题r是命题q的 条件. 例4 设命题p:|4x-3| 1,命题q:x2-(2a+1)x+a(a+1) 0,若﹁p是﹁q的必要不充分条件,求实数a的取值范围; 例5 设 是方程 的两个实根,试分析 是两实根 均大于1的什么条件?并给予证明. 五、课堂练习 1、设命题p: ,命题q: ,则p是q的 ( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 2、给出以下四个命题:①若p则q②若﹁r则﹁q③ 若r则﹁s ④若﹁s则q若它们都是真命题,则﹁p是s的 条件; 3、是否存在实数p,使 是 的充分条件?若存在,求出p的取值范围;若不存在说明理由. 六、课堂小结: 七、教学后记: 高三 班 学号 姓名 日期: 月 日 1、 A B是AB=B的 ( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 2、 是 的 ( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 3、 2x2-5x-30的一个必要不充分条件是 ( ) A.- 4、2且b是a+b4且ab的 ( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 5、设a1、b1、c1、a2、b2、c2均为非零实数,不等式a1x2+b1x+c10和a2x2+b2x+c20的解集分别为集合M和N,那么 是 M=N 的 ( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件 6、若命题A: ,命题B: ,则命题A是B的 条件; 7、设条件p:|x|=x,条件q:x2-x,则p是q的 条件; 8、方程mx2+2x+1=0至少有一个负根的充要条件是 ; 9、关于x的方程x2+mx+n = 0有两个小于1的正根的一个充要条件是 ; 10、已知 ,求证: 的充要条件是 ; 11、已知p:-210,q:1-m1+m,若﹁p是﹁q的必要不充分条件,求实数m的取值范围。 12、已知关于x的方程(1-a)x2+(a+2)x-4=0,aR,求: (1)方程有两个正根的充要条件; (2)方程至少有一正根的充要条件. 一、教学目标 1、知识与技能 (1)通过实物操作,增强学生的直观感知。 (2)能根据几何结构特征对空间物体进行分类。 (3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。 (4)会表示有关于几何体以及柱、锥、台的分类。 2、过程与方法 (1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。 (2)让学生观察、讨论、归纳、概括所学的知识。 3、情感态度与价值观 (1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。 (2)培养学生的空间想象能力和抽象括能力。 二、教学重点、难点 重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。 难点:柱、锥、台、球的结构特征的概括。 三、教学用具 (1)学法:观察、思考、交流、讨论、概括。 (2)实物模型、投影仪 四、教学思路 (一)创设情景,揭示课题 1、教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。教师对学生的活动及时给予评价。 2、所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。 (二)、研探新知 1、引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。 2、观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么?它们的共同特点是什么? 3、组织学生分组讨论,每小组选出一名同学发表本组讨论结果。在此基础上得出棱柱的主要结构特征。 (1)有两个面互相平行; (2)其余各面都是平行四边形; (3)每相邻两上四边形的公共边互相平行。概括出棱柱的概念。 4、教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。 5、提出问题:各种这样的棱柱,主要有什么不同?可不可以根据不同对棱柱分类? 请列举身边具有已学过的几何结构特征的`物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的? 6、以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。 7、让学生观察圆柱,并实物模型演示,如何得到圆柱,从而概括出圆标的概念以及相关的概念及圆柱的表示。 8、引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。 9、教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。 10、现实世界中,我们看到的物体大多由具有柱、锥、台、球等几何结构特征的物体组合而成。请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的? (三)质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。 1、有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明,如图) 2、棱柱的何两个平面都可以作为棱柱的底面吗? 3、课本P8,习题1.1 A组第1题。 4、圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转? 5、棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢? 四、巩固深化 练习:课本P7 练习1、2(1)(2) 课本P8 习题1.1 第2、3、4题 五、归纳整理 由学生整理学习了哪些内容 六、布置作业 课本P8 练习题1.1 B组第1题 课外练习 课本P8 习题1.1 B组第2题 【学习目标】 1、感受数学探索的成功感,提高学习数学的兴趣; 2、经历诱导公式的探索过程,感悟由未知到已知、复杂到简单的数学转化思想。 3、能借助单位圆的对称性理解记忆诱导公式,能用诱导公式进行简单应用。 【学习重点】三角函数的诱导公式的理解与应用 【学习难点】诱导公式的推导及灵活运用 【知识链接】(1)单位圆中任意角α的正弦、余弦的定义 (2)对称性:已知点P(x,),那么,点P关于x轴、轴、原点对称的点坐标 【学习过程】 一、预习自学 阅读书第19页——20页内容,通过对-α、π-α、π+α、2π-α、α的终边与单位圆的交点的对称性规律的探究,结合单位圆中任意角的正弦、余弦的定义,从中自我发现归纳出三角函数的诱导公式,并写出下列关系: (1)- 407[导学案]4.4单位圆的对称性与诱导公式与 407[导学案]4.4单位圆的对称性与诱导公式 的正弦函数、余弦函数关系 (2)角407[导学案]4.4单位圆的对称性与诱导公式与角 407[导学案]4.4单位圆的对称性与诱导公式 的正弦函数、余弦函数关系 (3)角 407[导学案]4.4单位圆的对称性与诱导公式与角 407[导学案]4.4单位圆的对称性与诱导公式 的正弦函数、余弦函数关系 (4)角 407[导学案]4.4单位圆的对称性与诱导公式与角 407[导学案]4.4单位圆的对称性与诱导公式 的正弦函数、余弦函数关系 二、合作探究 探究1、求下列函数值,思考你用到了哪些三角函数诱导公式?试总结一下求任意角的三角函数值的过程与方法。 (1) 407[导学案]4.4单位圆的对称性与诱导公式 (2) 407[导学案]4.4单位圆的对称性与诱导公式 (3)sin(-1650°); 探究2: 化简: 407[导学案]4.4单位圆的对称性与诱导公式 407[导学案]4.4单位圆的对称性与诱导公式(先逐个化简) 探究3、利用单位圆求满足 407[导学案]4.4单位圆的对称性与诱导公式 的角的集合。 三、学习小结 (1)你能说说化任意角的正(余)弦函数为锐角正(余)弦函数的一般思路吗? (2)本节学习涉及到什么数学思想方法? (3)我的疑惑有 【达标检测】 1、在单位圆中,角α的终边与单位圆交于点P(- 407[导学案]4.4单位圆的对称性与诱导公式 , 407[导学案]4.4单位圆的对称性与诱导公式 ), 则sin(-α)= ;cs(α±π)= ;cs(π-α)= 2.求下列函数值: (1)sin( 407[导学案]4.4单位圆的对称性与诱导公式 )= ; (2) cs210&rd;= 3、若csα=-1/2,则α的集合S= 高一人教版数学教案 高一人教版数学教案应该怎么写?编写教案的繁简,一般是有经验的教师写得简略些,而新教师写得详细些。下面小编给大家带来高一人教版数学教案,欢迎大家阅读。 1.1 集合含义及其表示 教学目标:理解集合的概念;掌握集合的三种表示方法,理解集合中元素的三性及元素与集合的关系;掌握有关符号及术语。 教学过程: 一、阅读下列语句: 1) 全体自然数0,1,2,3,4,5, 2) 代数式 . 3) 抛物线 上所有的点 4) 今年本校高一(1)(或(2))班的全体学生 5) 本校实验室的所有天平 6) 本班级全体高个子同学 7) 著名的科学家 上述每组语句所描述的对象是否是确定的? 二、1)集合: 2)集合的元素: 3)集合按元素的个数分,可分为1)__________2)_________ 三、集合中元素的三个性质: 1)___________2)___________3)_____________ 四、元素与集合的关系:1)____________2)____________ 五、特殊数集专用记号: 1)非负整数集(或自然数集)______2)正整数集_____3)整数集_______ 4)有理数集______5)实数集_____ 6)空集____ 六、集合的表示方法: 1) 2) 3) 七、例题讲解: 例1、 中三个元素可构成某一个三角形的三边长,那么此三角形一定不是 ( ) A,直角三角形 B,锐角三角形 C,钝角三角形 D,等腰三角形 例2、用适当的方法表示下列集合,然后说出它们是有限集还是无限集? 1)地球上的四大洋构成的集合; 2)函数 的全体 值的集合; 3)函数 的全体自变量 的集合; 4)方程组 解的集合; 5)方程 解的集合; 6)不等式 的解的集合; 7)所有大于0且小于10的奇数组成的集合; 8)所有正偶数组成的`集合; 例3、用符号 或 填空: 1) ______Q ,0_____N, _____Z,0_____ 2) ______ , _____ 3)3_____ , 4)设 , , 则 例4、用列举法表示下列集合; 1. 2. 3. 4. 例5、用描述法表示下列集合 1.所有被3整除的数 2.图中阴影部分点(含边界)的坐标的集合 课堂练习: 例6、设含有三个实数的集合既可以表示为 ,也可以表示为 ,则 的值等于___________ 例7、已知: ,若 中元素至多只有一个,求 的取值范围。 思考题:数集A满足:若 ,则 ,证明1):若2 ,则集合中还有另外两个元素;2)若 则集合A不可能是单元素集合。 小结: 作业 班级 姓名 学号 1. 下列集合中,表示同一个集合的是 ( ) A . M= ,N= B. M= ,N= C. M= ,N= D. M= ,N= 2. M= ,X= ,Y= , , .则 ( ) A . B. C. D. 3. 方程组 的解集是____________________. 4. 在(1)难解的题目,(2)方程 在实数集内的解,(3)直角坐标平面内第四象限的一些点,(4)很多多项式。能够组成集合的序号是________________. 5. 设集合 A= , B= , C= , D= ,E= 。 其中有限集的个数是____________. 6. 设 ,则集合 中所有元素的和为 7. 设x,y,z都是非零实数,则用列举法将 所有可能的值组成的集合表示为 8. 已知f(x)=x2-ax+b,(a,b R),A= ,B= , 若A= ,试用列举法表示集合B= 9. 把下列集合用另一种方法表示出来: (1) (2) (3) (4) 10. 设a,b为整数,把形如a+b 的一切数构成的集合记为M,设 ,试判断x+y,x-y,xy是否属于M,说明理由。 11. 已知集合A= (1) 若A中只有一个元素,求a的值,并求出这个元素; (2) 若A中至多只有一个元素,求a的取值集合。 12.若-3 ,求实数a的值。 【总结】20xx年已经到来,新的一年数学网会为您整理更多更好的文章,希望本文高一数学教案:集合含义及其表示能给您带来帮助! 学习目标: (1)理解函数的概念 (2)会用集合与对应语言来刻画函数, (3)了解构成函数的要素。 重点: 函数概念的理解 难点: 函数符号y=f(x)的理解 知识梳理: 自学课本P29—P31,填充以下空格。 1、设集合A是一个非空的实数集,对于A内 ,按照确定的对应法则f,都有 与它对应,则这种对应关系叫做集合A上的一个函数,记作 。 2、对函数 ,其中x叫做 ,x的取值范围(数集A)叫做这个函数的 ,所有函数值的`集合 叫做这个函数的 ,函数y=f(x) 也经常写为 。 3、因为函数的值域被 完全确定,所以确定一个函数只需要 。 4、依函数定义,要检验两个给定的变量之间是否存在函数关系,只要检验: ① ;② 。 5、设a, b是两个实数,且a (1)满足不等式 的实数x的集合叫做闭区间,记作 。 (2)满足不等式a (3)满足不等式 或 的实数x的集合叫做半开半闭区间,分别表示为 ; 分别满足x≥a,x>a,x≤a,x 其中实数a, b表示区间的两端点。 完成课本P33,练习A 1、2;练习B 1、2、3。 例题解析 题型一:函数的概念 例1:下图中可表示函数y=f(x)的图像的只可能是( ) 练习:设M={x| },N={y| },给出下列四个图像,其中能表示从集合M到集合N的函数关系的有____个。 题型二:相同函数的判断问题 例2:已知下列四组函数:① 与y=1 ② 与y=x ③ 与 ④ 与 其中表示同一函数的是( ) A. ② ③ B. ② ④ C. ① ④ D. ④ 练习:已知下列四组函数,表示同一函数的是( ) A. 和 B. 和 C. 和 D. 和 题型三:函数的定义域和值域问题 例3:求函数f(x)= 的定义域 练习:课本P33练习A组 4. 例4:求函数 , ,在0,1,2处的函数值和值域。 当堂检测 1、下列各组函数中,表示同一个函数的是( A ) A、 B、 C、 D、 2、已知函数 满足f(1)=f(2)=0,则f(-1)的值是( C ) A、5 B、-5 C、6 D、-6 3、给出下列四个命题: ① 函数就是两个数集之间的对应关系; ② 若函数的定义域只含有一个元素,则值域也只含有一个元素; ③ 因为 的函数值不随 的变化而变化,所以 不是函数; ④ 定义域和对应关系确定后,函数的值域也就确定了. 其中正确的有( B ) A. 1 个 B. 2 个 C. 3个 D. 4 个 4、下列函数完全相同的是 ( D ) A. , B. , C. , D. , 5、在下列四个图形中,不能表示函数的图象的是 ( B ) 6、设 ,则 等于 ( D ) A. B. C. 1 D.0 7、已知函数 ,求 的值.( ) 【摘要】鉴于大家对数学网十分关注,小编在此为大家整理了此文空间几何体的三视图和直观图高一数学教案,供大家参考! 本文题目:空间几何体的三视图和直观图高一数学教案 第一课时 1.2.1中心投影与平行投影 1.2.2空间几何体的三视图 教学要求:能画出简单几何体的三视图;能识别三视图所表示的空间几何体. 教学重点:画出三视图、识别三视图. 教学难点:识别三视图所表示的空间几何体. 教学过程: 一、新课导入: 1. 讨论:能否熟练画出上节所学习的几何体?工程师如何制作工程设计图纸? 2. 引入:从不同角度看庐山,有古诗:横看成岭侧成峰,远近高低各不同。不识庐山真面目,只缘身在此山中。 对于我们所学几何体,常用三视图和直观图来画在纸上. 三视图:观察者从不同位置观察同一个几何体,画出的空间几何体的图形; 直观图:观察者站在某一点观察几何体,画出的空间几何体的图形. 用途:工程建设、机械制造、日常生活. 二、讲授新课: 1. 教学中心投影与平行投影: ① 投影法的提出:物体在光线的照射下,就会在地面或墙壁上产生影子。人们将这种自然现象加以科学的抽象,总结其中的规律,提出了投影的方法。 ② 中心投影:光由一点向外散射形成的投影。其投影的大小随物体与投影中心间距离的变化而变化,所以其投影不能反映物体的实形. ③ 平行投影:在一束平行光线照射下形成的'投影. 分正投影、斜投影. 讨论:点、线、三角形在平行投影后的结果. 2. 教学柱、锥、台、球的三视图: 定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图 讨论:三视图与平面图形的关系? 画出长方体的三视图,并讨论所反应的长、宽、高 结合球、圆柱、圆锥的模型,从正面(自前而后)、侧面(自左而右)、上面(自上而下)三个角度,分别观察,画出观察得出的各种结果. 正视图、侧视图、俯视图. ③ 试画出:棱柱、棱锥、棱台、圆台的三视图. ( ④ 讨论:三视图,分别反应物体的哪些关系(上下、左右、前后)?哪些数量(长、宽、高) 正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度; 俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度; 侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。 ⑤ 讨论:根据以上的三视图,如何逆向得到几何体的形状. (试变化以上的三视图,说出相应几何体的摆放) 3. 教学简单组合体的三视图: ① 画出教材P16 图(2)、(3)、(4)的三视图. ② 从教材P16思考中三视图,说出几何体. 4. 练习: ① 画出正四棱锥的三视图. 画出右图所示几何体的三视图. ③ 右图是一个物体的正视图、左视图和俯视图,试描述该物体的形状. 5. 小结:投影法;三视图;顺与逆 三、巩固练习: 练习:教材P17 1、2、3、4 第二课时 1.2.3 空间几何体的直观图 教学要求:掌握斜二测画法;能用斜二测画法画空间几何体的直观图. 教学重点:画出直观图. 1、如果把数学比作一个成长中的生气勃勃的人,把问题比作人身体的一个重要的器官,那么你将用什么器官比喻问题的重要性呢 2、“问题是数学的心脏”,是一切科学发现与发明的源泉、在数学学习中,提出问题比解决问题具有同等甚至是更高的价值、因此在进入初中数学学习的时候,同学们要高度重视发现和提出数学问题,把这看作是提升自己数学能力的最重要的途径、 3、看到《有理数》这一章的标题,你想到的第一个问题是什么?接下来你又会提出什么问题呢? 4、“有理数”这个名词有点怪,难道还有“无理数”吗?”这个问题提得好!既然有“有理数”,当然会有“无理数”、要回答什么是“有理数”的问题,一个途径就是先回答“什么是无理数的问题”、 5、我们在小学所学的数中,就有无理数,那就是无限不循环小数、有限小数、无限循环小数都是有理数、大家想一想下面的问题: ①有限小数、无限循环小数与分数是什么关系? ②整数能不能化成分数的形式? ③由此你能不能联想出有理数的“理”是什么?也就是说,什么样的数是有理数? 1、1正数和负数 一、教学目标 知识与技能:了解正数和负数是怎样产生的,会识别正数和负数,理解0表示的量的意义;学会用正数和负数表示相反意义的量; 过程与方法:在形成负数概念的过程中,培养观察、归纳与概括能力、情感、态度与价值观:通过师生合作,联系实际,感受数学与生活的联系,激发学生学习数学的热情、 重点难点 重点:形成负数概念;学会用正数和负数表示相反意义的量、 难点:负数的意义及0的内涵、 二、精讲预设: 1、其实,在进入初中之前,我们就有同学初步学习过“负数”概念,知道什么是正数和负数,但在跨入初中数学的大门的时候,我们还是要隆重地引入负数概念,因为它是我们建立有理数概念不可缺少的基础、 2、什么叫做正数?什么叫做负数?负数的概念是建立在什么基础上的?你能换一种方式解释负数这个概念吗?请注意,给概念下定义的表达方式:……叫做……、 3、①把0以外的数分成正数和负数,起源于什么? ②表示相反意义的量,数的性质(正与负)是怎样规定的?有几种方式? ③表示相反意义的量,要特别注意量的表达,也就是一定不能忽略单位!否则就不是量,而是数了、 ④正数可以省略“+”号,负数可以省略“—”号吗?为什么? 4、还记得我在前面提出的关于“问题”在数学学习中地位的话吗?请你提出关于“正数和负数”的概念与应用的问题,我们来开一次“数学记者招待会”、 三、教学反思 1、这次尝试着从无理数的概念入手,“曲线教学”,一步到位,导出有理数的概念,从后续效果上看,还是比较成功的这一点在今后的教学中还可以延续、 2、在学生自主学习与尝试展示的过程中,采用事前精心设计的连续追问的方式,可以起到打通思维,贯通知识,加深理解的作用、 1、2、1有理数 一、教学目标 知识与技能:理解有理数的意义;能把有理数按要求分类;了解0在分类中作用、 过程与方法:初步了解分类的思想方法,能正确地对有理数进行分类、情感、态度与价值观:在体系中理解知识的内涵,在分类中了解概念之间的联系,在学生的头脑中初步建立起对立与统一的思考方法、 重点难点 重点:理解有理数的分类方法、 难点:掌握有理数的两种分类,避免混淆、 二、精讲预设 1、在罗列出所学过的有理数,并对有理数给出定义之后,提出“你能把所有的这些有理数作出分类吗?”的问题、 2、在让学生充分尝试对有理数作出分类之后,讲解数学学习的效益与分类讨论的标准问题、数学学习的效益,不仅体现在数学知识与数学方法的掌握上,更体现在对数学数学思想方法的理解与运用上,这才是数学学习最重要的价值所在、分类讨论就是一种重要的数学学习方法、在分类时首先要确定分类的标准,其次要注意遵循不重复、不遗漏的原则、 3、在解把有理数填入集合圈的习题时,会出现哪些问题?原因何在?怎么解决? ①在画集合圈时忽略省略号; ②在填分数集合时,把遗漏有限小数和无限循环小数; ③把无限循环小数误成分数、补充分类练习,采用《鼎新教案》P10例2,以加深学生对分类讨论的理解 三、教学反思 1、这是学生在初中数学学习中第一次接触分类思想,课本在这方面的处理太过简略,几乎到忽略不计的地步、为了弥补教材的不足,有必要加以补充、 2、因为有理数的概念在本章教学的开篇就与学生进行过比较深入的讨论,所以本节教学的重点还是以放在对分类的标准与原则上为宜,在这方面对学生进行训练的后续教学效益应该是比较高的,今后还应坚持、 1、2、2数轴 一、教学目标 知识与技能:了解数轴的概念,知道数轴的三要素,会画数轴;能将已知数在数轴上表示出来,能说出数轴上已知点表示的数、 过程与方法:通过对数轴的学习体会数形结合的数学思想、情感、态度与价值观:通过对数轴的直观认识,对数形结合思想的体会,认识不同事物之间的内在关系,感受数学与生活的联系、 重点难点 重点:数轴的概念、 难点:数轴的画法与应用、 二、精讲预设 1、画数轴注意事项歌诀 直线要直切勿曲,原点方向单位齐; 右为箭头左出头,无限延伸要留意; (长度)正负分布须对称,位置长度要适宜 、数轴画在格子中,舒展大方贵清晰、 (数) (原点)(单位长度) 2、在数轴上表示有理数的方法歌诀 先画数轴要素全,数点描成实心圆;注意方向与距离,负数分数思虑全;点在线上勿飘起,数据标在点上面、 3、应用归类、提出问题,组织学生完成、 三、教学反思 1、数轴是学生所接触的数形结合的第一个实例,因为对数轴概念的理解的不足,也因为教学中对数轴画法的练习设计数量偏少,导致形形色色的画法上的问题、对此一方面要在后续教学中加以弥补,另一方面在修改导学案的时候要对这一环节予以加强、 2、在数轴上表示分数与小数,尤其是负分数与负小数时,学生出现了较多的错误,方向性的错误有,距离上的错误更多、对此要反复加以强调与来练习、 1、2、3相反数 一、教学目标 知识与技能:借助数轴理解相反数的概念,知道互为相反数的两个数在数轴上的位置关系,给出一个数,能说出和写出它的相反数、 过程与方法:经历操作、对比,发现、提出、解决问题的过程,从形和数两个不同的侧面来理解相反数的意义,领会数形结合的思想,培养分析问题与解决问题的.能力、 情感、态度与价值观:让学生充分参与问题的解决过程,体验参与的快乐与成就感、 重点难点重点:相反数的概念、难点:相反数的识别与理解、 二、精讲预设 1、如何理解“两点关于原点对称”?位置关系,数量关系、 2、如何理解互为相反数的概念? “只有符号不同”,什么必须相同? 3、怎样表示一个数的相反数?在一个数的前面添上“—”时,要注意哪些问题? ①如果数不带符号,直接在数的前面添加“—”号; ②如果数本身带有符号,首先要用括号将这个数括起来,再在括号前前面; ③如果数是几个数的和或差的形式,参照第②条处理; 4、的相反数怎样表示?的相反数怎样表示?的相反数呢?你能提出更复杂的问题并自己解决吗?这里面的规律是什么? 三、教学反思 1、相反数是相对简单的概念,对于这个简单的知识,通过从形到数的认识过程,可以培养学生的数学认识能力,对此如果重视不够,将是一个损失、 2、相反数的表示方法其实是一个有一定难度的问题,解决的最好方法不是直接教给学生要注意什么,而是与学生一起探讨解决的方法、让学生参与解决问题的过程,也许是解决问题的最有效的方法、 1、2、4绝对值 一、教学目标 知识与技能:理解绝对值的意义,会求一个数的绝对值;会比较两个有理数的大小、 过程与方法:通过对正数、负数、0的绝对值的学习,体验分类讨论的数学思想、通关对有理数大小比较的学习,体验数形结合的数学思想、 情感、态度与价值观:在充分的参与中体验数学的美与价值、 重点难点 重点:绝对值的意义;有理数的大小的比较、 难点:绝对值的意义与两个负数的大小比较、 二、精讲预设 1、串讲相反数和绝对值问题提纲: ①相反数的几何意义是什么?(借助数轴解释相反数) ②在数轴上表示互为相反数的两个点的异同点分别是什么? ③什么叫做数的绝对值?数的绝对值是什么? ④依据绝对值的定义,怎样求一个数的绝对值? ⑤求绝对值的方法体现了什么数学思想方法?(分类讨论) ⑥求一个数的绝对值时要注意哪些问题? 2、有理数大小比较的方法讲解提纲: ⑴试用分类讨论的方法分解有理数大小的比较问题: ①比较两个正数的大小; ②比较正数和0的大小; ③比较0和负数的大小; ④比较正数和负数的大小; ⑤比较两个负数的大小、 ⑵上述问题中,真正需要解决的问题是什么?怎么解决?解决的程序是什么 ⑶解决一般的有理数大小问题的思维与表达程序是什么?(先分类,后表述)一看能不能直接比较大小?二看需不需化简后再比较大小?三要注意比较结果的表达要求(答案保持数的原有形式与排列顺序)、 三、教学反思 1、诱导学生分析相反数的几何意义的共同特征,从而引出绝对值的概念,借助于知识之间的联系,使新知识在“出场”的时候,就与学生建立起“亲密”的联系、这一点是本节教学的亮点之一、 教学目标 1.使学生了解反函数的概念; 2.使学生会求一些简单函数的反函数; 3.培养学生用辩证的观点观察、分析解决问题的能力。 教学重点 1.反函数的概念; 2.反函数的求法。 教学难点 反函数的概念。 教学方法 师生共同讨论 教具装备 幻灯片2张 第一张:反函数的定义、记法、习惯记法。(记作A); 第二张:本课时作业中的预习内容及提纲。 教学过程 (I)讲授新课 (检查预习情况) 师:这节课我们来学习反函数(板书课题)§2.4.1反函数的概念。 同学们已经进行了预习,对反函数的概念有了初步的了解,谁来复述一下反函数的定义、记法、习惯记法? 生:(略) (学生回答之后,打出幻灯片A)。 师:反函数的定义着重强调两点: (1)根据y=f(x)中x与y的关系,用y把x表示出来,得到x=φ(y); (2)对于y在c中的任一个值,通过x=φ(y),x在A中都有惟一的值和它对应。 师:应该注意习惯记法是由记法改写过来的。 师:由反函数的定义,同学们考虑一下,怎样的映射确定的函数才有反函数呢? 生:一一映射确定的函数才有反函数。 (学生作答后,教师板书,若学生答不来,教师再予以必要的启示)。 师:在y=f(x)中与y=f-1(y)中的x、y,所表示的量相同。(前者中的x与后者中的x都属于同一个集合,y也是如此),但地位不同(前者x是自变量,y是函数值;后者y是自变量,x是函数值。) 在y=f(x)中与y=f–1(x)中的x都是自变量,y都是函数值,即x、y在两式中所处的地位相同,但表示的量不同(前者中的x是后者中的y,前者中的y是后者中的x。) 由此,请同学们谈一下,函数y=f(x)与它的反函数y=f–1(x)两者之间,定义域、值域存在什么关系呢? 生:(学生作答,教师板书)函数的定义域,值域分别是它的反函数的值域、定义域。 师:从反函数的概念可知:函数y=f(x)与y=f–1(x)互为反函数。 从反函数的概念我们还可以知道,求函数的反函数的方法步骤为: (1)由y=f(x)解出x=f–1(y),即把x用y表示出; (2)将x=f–1(y)改写成y=f–1(x),即对调x=f–1(y)中的x、y。 (3)指出反函数的定义域。 下面请同学自看例1 (II)课堂练习课本P68练习1、2、3、4。 (III)课时小结 本节课我们学习了反函数的概念,从中知道了怎样的映射确定的函数才有反函数并求函数的反函数的方法步骤,大家要熟练掌握。 (IV)课后作业 一、课本P69习题2.41、2。 二、预习:互为反函数的函数图象间的关系,亲自动手作题中要求作的图象。 板书设计 课题:求反函数的方法步骤: 定义:(幻灯片) 注意:小结 一一映射确定的 函数才有反函数 函数与它的反函 数定义域、值域的关系。 人教版高一数学教案 作为一位杰出的教职工,时常会需要准备好教案,教案有助于顺利而有效地开展教学活动。来参考自己需要的教案吧!下面是小编帮大家整理的人教版高一数学教案,仅供参考,希望能够帮助到大家。 学习目标 1.函数奇偶性的概念 2.由函数图象研究函数的奇偶性 3.函数奇偶性的判断 重点:能运用函数奇偶性的定义判断函数的奇偶性 难点:理解函数的奇偶性 知识梳理: 1.轴对称图形: 2中心对称图形: 【概念探究】 1、 画出函数 ,与 的图像;并观察两个函数图像的对称性。 2、 求出 , 时的函数值,写出 , 。 结论: 。 3、 奇函数:___________________________________________________ 4、 偶函数:______________________________________________________ 【概念深化】 (1)、强调定义中任意二字,奇偶性是函数在定义域上的整体性质。 (2)、奇函数偶函数的定义域关于原点对称。 5、奇函数与偶函数图像的对称性: 如果一个函数是奇函数,则这个函数的图像是以坐标原点为对称中心的__________。反之,如果一个函数的图像是以坐标原点为对称中心的中心对称图形,则这个函数是___________。 如果一个函数是偶函数,则这个函数的图像是以 轴为对称轴的__________。反之,如果一个函数的图像是关于 轴对称,则这个函数是___________。 6. 根据函数的奇偶性,函数可以分为____________________________________. 题型一:判定函数的奇偶性。 例1、判断下列函数的奇偶性: (1) (2) (3) (4) (5) 练习:教材第49页,练习A第1题 总结:根据例题,你能给出用定义判断函数奇偶性的步骤? 题型二:利用奇偶性求函数解析式 例2:若f(x)是定义在R上的奇函数,当x0时,f(x)=x(1-x),求当 时f(x)的解析式。 练习:若f(x)是定义在R上的奇函数,当x0时,f(x)=x|x-2|,求当x0时f(x)的解析式。 已知定义在实数集 上的奇函数 满足:当x0时, ,求 的表达式 题型三:利用奇偶性作函数图像 例3 研究函数 的性质并作出它的图像 练习:教材第49练习A第3,4,5题,练习B第1,2题 当堂检测 1 已知 是定义在R上的.奇函数,则( D ) A. B. C. D. 2 如果偶函数 在区间 上是减函数,且最大值为7,那么 在区间 上是( B ) A. 增函数且最小值为-7 B. 增函数且最大值为7 C. 减函数且最小值为-7 D. 减函数且最大值为7 3 函数 是定义在区间 上的偶函数,且 ,则下列各式一定成立的是(C ) A. B. C. D. 4 已知函数 为奇函数,若 ,则 -1 5 若 是偶函数,则 的单调增区间是 6 下列函数中不是偶函数的是(D ) A B C D 7 设f(x)是R上的偶函数,切在 上单调递减,则f(-2),f(- ),f(3)的大小关系是( A ) A B f(- )f(-2) f(3) C f(- ) 8 奇函数 的图像必经过点( C ) A (a,f(-a)) B (-a,f(a)) C (-a,-f(a)) D (a,f( )) 9 已知函数 为偶函数,其图像与x轴有四个交点,则方程f(x)=0的所有实根之和是( A ) A 0 B 1 C 2 D 4 10 设f(x)是定义在R上的奇函数,且x0时,f(x)= ,则f(-2)=_-5__ 11若f(x)在 上是奇函数,且f(3)_f(-1) 12.解答题 用定义判断函数 的奇偶性。 13定义证明函数的奇偶性 已知函数 在区间D上是奇函数,函数 在区间D上是偶函数,求证: 是奇函数 14利用函数的奇偶性求函数的解析式: 已知分段函数 是奇函数,当 时的解析式为 ,求这个函数在区间 上的解析表达式。 1.1 集合含义及其表示 教学目标:理解集合的概念;掌握集合的三种表示方法,理解集合中元素的三性及元素与集合的关系;掌握有关符号及术语。 教学过程: 一、阅读下列语句: 1) 全体自然数0,1,2,3,4,5, 2) 代数式 . 3) 抛物线 上所有的点 4) 今年本校高一(1)(或(2))班的全体学生 5) 本校实验室的所有天平 6) 本班级全体高个子同学 7) 著名的科学家 上述每组语句所描述的对象是否是确定的? 二、1)集合: 2)集合的.元素: 3)集合按元素的个数分,可分为1)__________2)_________ 三、集合中元素的三个性质: 1)___________2)___________3)_____________ 四、元素与集合的关系:1)____________2)____________ 五、特殊数集专用记号: 1)非负整数集(或自然数集)______2)正整数集_____3)整数集_______ 4)有理数集______5)实数集_____ 6)空集____ 六、集合的表示方法: 1) 2) 3) 七、例题讲解: 例1、 中三个元素可构成某一个三角形的三边长,那么此三角形一定不是 ( ) A,直角三角形 B,锐角三角形 C,钝角三角形 D,等腰三角形 例2、用适当的方法表示下列集合,然后说出它们是有限集还是无限集? 1)地球上的四大洋构成的集合; 2)函数 的全体 值的集合; 3)函数 的全体自变量 的集合; 4)方程组 解的集合; 5)方程 解的集合; 6)不等式 的解的集合; 7)所有大于0且小于10的奇数组成的集合; 8)所有正偶数组成的集合; 例3、用符号 或 填空: 1) ______Q ,0_____N, _____Z,0_____ 2) ______ , _____ 3)3_____ , 4)设 , , 则 例4、用列举法表示下列集合; 1. 2. 3. 4. 例5、用描述法表示下列集合 1.所有被3整除的数 2.图中阴影部分点(含边界)的坐标的集合 课堂练习: 例6、设含有三个实数的集合既可以表示为 ,也可以表示为 ,则 的值等于___________ 例7、已知: ,若 中元素至多只有一个,求 的取值范围。 思考题:数集A满足:若 ,则 ,证明1):若2 ,则集合中还有另外两个元素;2)若 则集合A不可能是单元素集合。 小结: 作业 班级 姓名 学号 1. 下列集合中,表示同一个集合的是 ( ) A . M= ,N= B. M= ,N= C. M= ,N= D. M= ,N= 2. M= ,X= ,Y= , , .则 ( ) A . B. C. D. 3. 方程组 的解集是____________________. 4. 在(1)难解的题目,(2)方程 在实数集内的解,(3)直角坐标平面内第四象限的一些点,(4)很多多项式。能够组成集合的序号是________________. 5. 设集合 A= , B= , C= , D= ,E= 。 其中有限集的个数是____________. 6. 设 ,则集合 中所有元素的和为 7. 设x,y,z都是非零实数,则用列举法将 所有可能的值组成的集合表示为 8. 已知f(x)=x2-ax+b,(a,b R),A= ,B= , 若A= ,试用列举法表示集合B= 9. 把下列集合用另一种方法表示出来: (1) (2) (3) (4) 10. 设a,b为整数,把形如a+b 的一切数构成的集合记为M,设 ,试判断x+y,x-y,xy是否属于M,说明理由。 11. 已知集合A= (1) 若A中只有一个元素,求a的值,并求出这个元素; (2) 若A中至多只有一个元素,求a的取值集合。 12.若-3 ,求实数a的值。 【总结】20xx年已经到来,新的一年数学网会为您整理更多更好的文章,希望本文高一数学教案:集合含义及其表示能给您带来帮助! 一、教学目标: 1。通过高速公路上的实际例子,引起积极的思考和交流,从而认识到生活中处处可以遇到变量间的依赖关系。能够利用初中对函数的认识,了解依赖关系中有的是函数关系,有的则不是函数关系。 2。培养广泛联想的能力和热爱数学的`态度。 二、教学重点: 在于让学生领悟生活中处处有变量,变量之间充满了关系 教学难点:培养广泛联想的能力和热爱数学的态度 三、教学方法: 探究交流法 四、教学过程 (一)、知识探索: 阅读课文P25页。实例分析:书上在高速公路情境下的问题。 在高速公路情景下,你能发现哪些函数关系? 2。对问题3,储油量v对油面高度h、油面宽度w都存在依赖关系,两种依赖关系都有函数关系吗? 问题小结: 1。生活中变量及变量之间的依赖关系随处可见,并非有依赖关系的两个变量都有函数关系,只有满足对于一个变量的每一个值,另一个变量都有确定的值与之对应,才称它们之间有函数关系。 2。构成函数关系的两个变量,必须是对于自变量的每一个值,因变量都有确定的y值与之对应。 3。确定变量的依赖关系,需分清谁是自变量,谁是因变量,如果一个变量随着另一个变量的变化而变化,那么这个变量是因变量,另一个变量是自变量。 (二)、新课探究——函数概念 1。初中关于函数的定义: 2。从集合的观点出发,函数定义: 给定两个非空数集A和B,如果按照某个对应关系f,对于A中的任何一个数x,在集合B中都存在确定的数f(x)与之对应,那么就把这种对应关系f叫做定义在A上的函数,记作或f:A→B,或y=f(x),x∈A。; 此时x叫做自变量,集合A叫做函数的定义域,集合{f(x)︱x∈A}叫作函数的值域。习惯上我们称y是x的函数。 3。定义域,值域,对应法则 4。函数值 当x=a时,我们用f(a)表示函数y=f(x)的函数值。 [三维目标] 一、知识与技能: 1、巩固集合、子、交、并、补的概念、性质和记号及它们之间的关系 2、了解集合的运算包含了集合表示法之间的转化及数学解题的一般思想 3、了解集合元素个数问题的讨论说明 二、过程与方法 通过提问汇总练习提炼的形式来发掘学生学习方法 三、情感态度与价值观 培养学生系统化及创造性的思维 [教学重点、难点]:会正确应用其概念和性质做题 [教 具]:多媒体、实物投影仪 [教学方法]:讲练结合法 [授课类型]:复习课 [课时安排]:1课时 [教学过程]:集合部分汇总 本单元主要介绍了以下三个问题: 1,集合的含义与特征 2,集合的表示与转化 3,集合的基本运算 一,集合的含义与表示(含分类) 1,具有共同特征的对象的全体,称一个集合 2,集合按元素的个数分为:有限集和无穷集两类 重点 理解角与角的相关概念;掌握角的度量单位以及单位之间的换算. 难点 理解角与角的相关概念;掌握角的度量单位以及单位之间的换算. 一、创设情境,导入新知 展示实物:时钟,圆规,折扇等. (1)观察实物与图片,你发现其中有什么相同图形吗?学生回答,教师点评,注意鼓励学生. (2)你能把观察得到的图形画在本子上或黑板上吗?这是一些什么图形?思考,动手画一画. (3)从黑板上这些不同的图形中,你能归纳出它们的共同特点吗? 学生相互交流并回答,挖掘和利用现实生活中与角相关的背景,让学生在现实背景中认识角,培养学生的动手能力.引导学生观察并归纳角的共同点,进而引入课题. 二、自主合作,感受新知 回顾以前学的知识、阅读课文并结合生活实际,完成“预习导学”部分. 三、师生互动,理解新知 探究点一:角的概念及表示方法 活动一:从生活中认识角 我们看物体时,有视角,钟表的指针转动也形成角.请同学们看课本后回答下面问题. (1)角是一个几何图形,请大家说说,角是由什么图形构成的?(学生回答,教师点评,注意鼓励学生) (2)如果我们把角看作是一条射线绕它的端点旋转围成的图形,那么始边和终边又指什么? 教师总结:角有两个定义,一个是静态的定义,把角看作由一点出发的两条射线组成的图形;另一个定义是动态的,把角看作一条射线绕端点旋转所形成的图形,把开始位置的射线叫做始边,把终止位置的射线叫做终边. (3)请同学们说一说,我们日常生活中,哪些地方有角.(学生举例) 活动二:角的表示方法 我们怎样表示角呢?请同学们看课本上说了几种表示方法?(学生先看书,后回答) 教师总结:(1)用三个大写字母可以表示一个角,比如∠AOB. 练习:谁能指出下列各角的顶点和两条边? 注意:①三个字母的顺序有规定,顶点的字母必须写在中间. ②顶点的字母不一定用O,角的始边与终边的字母也可以随意. (2)当一个顶点只有一个角时,也可以用顶点的字母表示.比如,下面的角可以表示为∠O. 练习:判断下列角可以用顶点的字母表示吗? (3)用数字或小写的希腊字母表示角.(注意:角中不能有角) 练习:下面表示角的方法,哪个是正确的?哪个是错误的.? 探究点二:角的度量 活动三:角的度量 (1)请同学们借助量角器画出下列各角: ①30° ②45° ③60° ④90° ⑤120° ⑥150° ⑦62° ⑧105° 学生画图,教师指导.(根据需要教师可先做示范) (2)任意画一个角,用量角器测量角的大小.提问:如果这个角的度数不是整数,应该怎样表示这个角的度数呢?引出角的度量单位是度、分、秒. 教师总结:它们之间的关系是:1°=60′,1′=60″ (强调度、分、秒是60进制,不是十进制). (3)还有什么单位是60进制? (4)让学生画一个1°角,感受1°角有多大. 四、应用迁移,运用新知 1.角的定义 例1 下列说法中,正确的是( ) A.两条射线组成的图形叫做角 B.有公共端点的两条线段组成的图形叫做角 C.角可以看作是由一条射线绕着它的端点旋转而形成的图形 D.角可以看作是由一条线段绕着它的端点旋转而形成的图形 解析:A.有公共端点的两条射线组成的图形叫做角,故错误;B.根据A可得B错误;C.角可以看作是由一条射线绕着它的端点旋转而形成的图形,正确;D.据C可得D错误. 方法总结:此题考查了角的定义,有公共端点的两条不重合的射线组成的图形叫做角.这个公共端点叫做角的顶点,这两条射线叫做角的两条边. 2.角的表示方法 例2 下列四个图形中,能用∠1、∠AOB、∠O三种方法表示同一个角的图形是( ) A B C D 解析:在角的顶点处有多个角时,用一个字母表示这个角,这种方法是错误的.所以A、C、D错误. 方法总结:角的两个基本元素中,边是两条射线, 顶点是这两条射线的公共端点. 3.判断角的数量 例3 如图所示,在∠AOB的内部有3条射线,则图中角的个数为( ) A.10 B.15 C.5 D.20 解析:可以根据图形依次数出角的个数;或者根据公式求图中角的个数是12×5×(5-1)=10. 方法总结:若从一点发出n条射线,则构成12n(n-1)个角. 4.角的度量 例4 见课本P144例1. 方法总结:用度、分、秒表示的角度和用度表示的角度的相互转化的过程正好相反:大单位化小单位,乘以进率;而小单位化大单位要除以进率. 五、尝试练习,掌握新知 课本P144练习第1、2题、P145练习第1、2题. “随堂演练”部分. 六、课堂小结,梳理新知 通过本节课的学习,我们都学到了哪些数学知识和方法? 本节课学习了角及角的有关概念,并会表示角;知道角的度量单位,并能进行单位的转换;会把角的知识与现实生活相联系,用角的知识解释生活中的一些现象. 七、深化练习,巩固新知 课本P145~146习题4.4第1~4题. “课时作业”部分. 本文题目:高一数学教案:函数的奇偶性 课题:1.3.2函数的奇偶性 一、三维目标: 知识与技能:使学生理解奇函数、偶函数的概念,学会运用定义判断函数的奇偶性。 过程与方法:通过设置问题情境培养学生判断、推断的能力。 情感态度与价值观:通过绘制和展示优美的函数图象来陶冶学生的情操. 通过组织学生分组讨论,培养学生主动交流的合作精神,使学生学会认识事物的特殊性和一般性之间的关系,培养学生善于探索的思维品质。 二、学习重、难点: 重点:函数的奇偶性的概念。 难点:函数奇偶性的判断。 三、学法指导: 学生在独立思考的基础上进行合作交流,在思考、探索和交流的过程中获得对函数奇偶性的全面的体验和理解。对于奇偶性的应用采取讲练结合的方式进行处理,使学生边学边练,及时巩固。 四、知识链接: 1.复习在初中学习的轴对称图形和中心对称图形的定义: 2.分别画出函数f (x) =x3与g (x) = x2的图象,并说出图象的对称性。 五、学习过程: 函数的奇偶性: (1)对于函数 ,其定义域关于原点对称: 如果______________________________________,那么函数 为奇函数; 如果______________________________________,那么函数 为偶函数。 (2)奇函数的图象关于__________对称,偶函数的图象关于_________对称。 (3)奇函数在对称区间的增减性 ;偶函数在对称区间的增减性 。 六、达标训练: A1、判断下列函数的奇偶性。 (1)f(x)=x4;(2)f(x)=x5; (3)f(x)=x+ (4)f(x)= A2、二次函数 ( )是偶函数,则b=___________ . B3、已知 ,其中 为常数,若 ,则 _______ . B4、若函数 是定义在R上的奇函数,则函数 的图象关于 ( ) (A) 轴对称 (B) 轴对称 (C)原点对称 (D)以上均不对 B5、如果定义在区间 上的函数 为奇函数,则 =_____ . C6、若函数 是定义在R上的奇函数,且当 时, ,那么当 时, =_______ . D7、设 是 上的奇函数, ,当 时, ,则 等于 ( ) (A)0.5 (B) (C)1.5 (D) D8、定义在 上的奇函数 ,则常数 ____ , _____ . 七、学习小结: 本节主要学习了函数的奇偶性,判断函数的奇偶性通常有两种方法,即定义法和图象法,用定义法判断函数的奇偶性时,必须注意首先判断函数的定义域是否关于原点对称。单调性与奇偶性的综合应用是本节的一个难点,需要学生结合函数的图象充分理解好单调性和奇偶性这两个性质。 八、课后反思: 1、教材(教学内容) 本课时主要研究任意角三角函数的定义。三角函数是一类重要的基本初等函数,是描述周期性现象的重要数学模型,本课时的内容具有承前启后的重要作用:承前是因为可以用函数的定义来抽象和规范三角函数的定义,同时也可以类比研究函数的模式和方法来研究三角函数;启后是指定义了三角函数之后,就可以进一步研究三角函数的性质及图象特征,并体会三角函数在解决具有周期性变化规律问题中的作用,从而更深入地领会数学在其它领域中的重要应用、 2、设计理念 本堂课采用“问题解决”教学模式,在课堂上既充分发挥学生的主体作用,又体现了教师的引导作用。整堂课先通过问题引导学生梳理已有的知识结构,展开合理的联想,提出整堂课要解决的中心问题:圆周运动等具周期性规律运动可以建立函数模型来刻画吗?从而引导学生带着问题阅读和钻研教材,引发认知冲突,再通过问题引导学生改造或重构已有的认知结构,并运用类比方法,形成“任意角三角函数的定义”这一新的概念,最后通过例题与练习,将任意角三角函数的定义,内化为学生新的认识结构,从而达成教学目标、 3、教学目标 知识与技能目标:形成并掌握任意角三角函数的定义,并学会运用这一定义,解决相关问题、 过程与方法目标:体会数学建模思想、类比思想和化归思想在数学新概念形成中的重要作用、 情感态度与价值观目标:引导学生学会阅读数学教材,学会发现和欣赏数学的理性之美、 4、重点难点 重点:任意角三角函数的定义、 难点:任意角三角函数这一概念的理解(函数模型的建立)、类比与化归思想的渗透、 5、学情分析 学生已有的认知结构:函数的概念、平面直角坐标系的.概念、任意角和弧度制的相关概念、以直角三角形为载体的锐角三角函数的概念、在教学过程中,需要先将学生的以直角三角形为载体的锐角三角函数的概念改造为以象限角为载体的锐角三角函数,并形成以角的终边与单位园的交点的坐标来表示的锐角三角函数的概念,再拓展到任意角的三角函数的定义,从而使学生形成新的认知结构、 6、教法分析 “问题解决”教学法,是以问题为主线,引导和驱动学生的思维和学习活动,并通过问题,引导学生的质疑和讨论,充分展示学生的思维过程,最后在解决问题的过程中形成新的认知结构、这种教学模式能较好地体现课堂上老师的主导作用,也能充分发挥课堂上学生的主体作用、 7、学法分析 本课时先通过“阅读”学习法,引导学生改造已有的认知结构,再通过类比学习法引导学生形成“任意角的三角函数的定义”,最后引导学生运用类比学习法,来研究三角函数一些基本性质和符号问题,从而使学生形成新的认识结构,达成教学目标、 8、教学设计(过程) 一、引入 问题1:我们已经学过了任意角和弧度制,你对“角”这一概念印象最深的是什么? 问题2:研究“任意角”这一概念时,我们引进了平面直角坐标系,对平面直角坐标系,令你印象最深刻的是什么? 问题3:当角clipXimage002的终边在绕顶点O转动时,终边上的一个点P(x,y)必定随着终边绕顶点O作圆周运动,在这圆周运动中,有哪些数量?圆周运动的这些量之间的关系能用一个函数模型来刻画吗? 二、原有认知结构的改造和重构 问题4:当角clipXimage002[1]是锐角时,clipXimage004,线段OP的长度clipXimage006这几个量之间有何关系? 学生回答,分析结论,指出这种关系就是我们在初中学习过的锐角三角函数 学生阅读教材,并思考: 问题5:锐角三角函数是我们高中意义上的函数吗?如何利用函数的定义来理解它? 学生讨论并回答 三、新概念的形成 问题6:如果我们将角度推广到任意角,我们能得到任意角的三角函数的定义吗? 学生回答,并阅读教材,得到任意角三角函数的定义、并思考: 问题7:任意角三角函数的定义符合我们高中所学的函数定义吗? 展示任意角三角函数的定义,并指出它是如何刻划圆周运动的 并类比函数的研究方法,得出任意角三角函数的定义域和值域。 四、概念的运用 1、基础练习 ①口算clipXimage008的值、 ②分别求clipXimage010的值 小结:ⅰ)画终边,求终边与单位圆交点的坐标,算比值 ⅱ)诱导公式(一) ③若clipXimage012,试写出角clipXimage002[2]的值。 ④若clipXimage015,不求值,试判断clipXimage017的符号 ⑤若clipXimage019,则clipXimage021为第象限的角、 例1、已知角clipXimage002[3]的终边过点clipXimage024,求clipXimage026之值 若P点的坐标变为clipXimage028,求clipXimage030的值 小结:任意角三角函数的等价定义(终边定义法) 例2、一物体A从点clipXimage032出发,在单位圆上沿逆时针方向作匀速圆周运动,若经过的弧长为clipXimage034,试用clipXimage034[1]表示物体A所在位置的坐标。若该物体作圆周运动的圆的半径变为clipXimage006[1],如何用clipXimage034[2]来表示物体A所在位置的坐标? 小结:可以采用三角函数模型来刻画圆周运动 五、拓展探究 问题8:当角clipXimage002[4]的终边绕顶点O作圆周运动时,角clipXimage002[5]的终边与单位圆的交点clipXimage039的坐标clipXimage041clipXimage043与角clipXimage002[6]之间还可以建立其它函数模型吗? 思考:引入平面直角坐标系后,我们可以把圆周运动用数来刻画,这是将“形”转化成为“数”;角clipXimage002[7]正弦值是一个数,你能借助平面直角坐标系和单位圆,用“形”来表示这个“数”吗?角clipXimage002[8]余弦值、正切值呢? 六、课堂小结 问题9:请你谈谈本节课的收获有哪些? 七、课后作业 教材P21第6、7、8题 教学目标 1.理解分数指数幂的含义,了解实数指数幂的意义。 2.掌握有理数指数幂的运算性质,灵活的运用乘法公式进行有理数指数幂的运算和化简,会进行根式与分数指数幂的相互转化。 教学重点 1.分数指数幂含义的理解。 2.有理数指数幂的运算性质的理解。 3.有理数指数幂的运算和化简。 教学难点 1.分数指数幂含义的理解。 2.有理数指数幂的运算和化简。 教学过程 一.问题情景 上节课研究了根式的意义及根式的'性质,那么根式与指数幂有什么关系?整数指数幂有那些运算性质? 二.学生活动 1.说出下列各式的意义,并指出其结果的指数,被开方数的指数及根指数三者之间的关系 (1)=(2)= 2.从上述问题中,你能得到的结论为 3.(a0)及(a0)能否化成指数幂的形式? 三.数学理论 正分数指数幂的意义:=(a0,m,n均为正整数) 负分数指数幂的意义:=(a0,m,n均为正整数) 1.规定:0的正分数指数幂仍是0,即=0 0的负分数指数幂无意义。 3.规定了分数指数幂的意义后,指数的概念从整数指数推广到了有理数指数,因而整数指数幂的运算性质同样适用于有理数指数幂。 即=(1) =(2)其中s,tQ,a0,b0 =(3) 四.数学运用 例1求值: (1)(2)(3)(4) 例2用分数指数幂的形式表示下列各式(a0) (1)(2) 例3化简 (1) (2)(3) 例4化简 例5已知求(1)(2) 五.回顾小结 1.分数指数幂的意义。=(0,m,n) 无意义 2.有理数指数幂的运算性质 3.整式运算律及乘法公式在分数指数幂运算中仍适用 4.指数概念从整数指数幂推广到有理数指数幂,同样可以推广到实数指数幂,请同学们阅读P47的阅读部分 练习P47-48练习1,2,3,4 六.课外作业 P48习题2.2(1)2,4 一、教学目标 1.知识与技能:(1)通过实物操作,增强学生的直观感知。 (2)能根据几何结构特征对空间物体进行分类。 (3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。 (4)会表示有关于几何体以及柱、锥、台的分类。 2.过程与方法: (1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。 (2)让学生观察、讨论、归纳、概括所学的知识。 3.情感态度与价值观: (1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。 (2)培养学生的空间想象能力和抽象括能力。 二、教学重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。 难点:柱、锥、台、球的结构特征的概括。 三、教学用具 (1)学法:观察、思考、交流、讨论、概括。 (2)实物模型、投影仪。 四、教学过程 (一)创设情景,揭示课题 1、由六根火柴最多可搭成几个三角形?(空间:4个) 2在我们周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何? 3、展示具有柱、锥、台、球结构特征的空间物体。 问题:请根据某种标准对以上空间物体进行分类。 (二)、研探新知 空间几何体:多面体(面、棱、顶点):棱柱、棱锥、棱台; 旋转体(轴):圆柱、圆锥、圆台、球。 1、棱柱的结构特征: (1)观察棱柱的几何物体以及投影出棱柱的图片,思考:它们各自的特点是什么?共同特点是什么? (学生讨论) (2)棱柱的主要结构特征(棱柱的概念): ①有两个面互相平行;②其余各面都是平行四边形;③每相邻两上四边形的公共边互相平行。 (3)棱柱的表示法及分类: (4)相关概念:底面(底)、侧面、侧棱、顶点。 2、棱锥、棱台的结构特征: (1)实物模型演示,投影图片; (2)以类似的方法,根据出棱锥、棱台的结构特征,并得出相关的概念、分类以及表示。 棱锥:有一个面是多边形,其余各面都是有一个公共顶点的三角形。 棱台:且一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分。 3、圆柱的结构特征: (1)实物模型演示,投影图片——如何得到圆柱? (2)根据圆柱的概念、相关概念及圆柱的表示。 4、圆锥、圆台、球的结构特征: (1)实物模型演示,投影图片 ——如何得到圆锥、圆台、球? (2)以类似的方法,根据圆锥、圆台、球的结构特征,以及相关概念和表示。 5、柱体、锥体、台体的概念及关系: 探究:棱柱、棱锥、棱台都是多面体,它们在结构上有哪些相同点和不同点?三者的关系如何?当底面发生变化时,它们能否互相转化? 圆柱、圆锥、圆台呢? 6、简单组合体的结构特征: (1)简单组合体的构成:由简单几何体拼接或截去或挖去一部分而成。 (2)实物模型演示,投影图片——说出组成这些物体的几何结构特征。 (3)列举身边物体,说出它们是由哪些基本几何体组成的。 (三)排难解惑,发展思维 1、有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱?(反例说明) 2、棱柱的何两个平面都可以作为棱柱的底面吗? 3、圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转? (四)巩固深化 练习:课本P7练习1、2;课本P8习题1.1第1、2、3、4、5题 (五)归纳整理:由学生整理学习了哪些内容 高一数学必修2教案:空间几何体的`三视图 一、教学目标 1.知识与技能:掌握画三视图的基本技能,丰富学生的空间想象力。 2.过程与方法:通过学生自己的亲身实践,动手作图,体会三视图的作用。 3.情感态度与价值观:提高学生空间想象力,体会三视图的作用。 二、教学重点:画出简单几何体、简单组合体的三视图; 难点:识别三视图所表示的空间几何体。 三、学法指导:观察、动手实践、讨论、类比。 四、教学过程 (一)创设情景,揭开课题 展示庐山的风景图——“横看成岭侧看成峰,远近高低各不同”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体。 (二)讲授新课 1、中心投影与平行投影: 中心投影:光由一点向外散射形成的投影; 平行投影:在一束平行光线照射下形成的投影。 正投影:在平行投影中,投影线正对着投影面。 2、三视图: 正视图:光线从几何体的前面向后面正投影,得到的投影图; 侧视图:光线从几何体的左面向右面正投影,得到的投影图; 俯视图:光线从几何体的上面向下面正投影,得到的投影图。 三视图:几何体的正视图、侧视图和俯视图统称为几何体的三视图。 三视图的画法规则:长对正,高平齐,宽相等。 长对正:正视图与俯视图的长相等,且相互对正; 高平齐:正视图与侧视图的高度相等,且相互对齐; 宽相等:俯视图与侧视图的宽度相等。 3、画长方体的三视图: 正视图、侧视图和俯视图分别是从几何体的正前方、正左方和正上方观察到有几何体的正投影图,它们都是平面图形。 长方体的三视图都是长方形,正视图和侧视图、侧视图和俯视图、俯视图和正视图都各有一条边长相等。 4、画圆柱、圆锥的三视图: 5、探究:画出底面是正方形,侧面是全等的三角形的棱锥的三视图。 (三)巩固练习 课本P15练习1、2;P20习题1.2 [A组] 2。 (四)归纳整理 请学生回顾发表如何作好空间几何体的三视图 (五)布置作业 课本P20习题1.2 [A组] 1。 学习目标 1.能根据抛物线的定义建立抛物线的标准方程; 2.会根据抛物线的标准方程写出其焦点坐标与准线方程; 3.会求抛物线的标准方程。 一、预习检查 1.完成下表: 标准方程 图形 焦点坐标 准线方程 开口方向 2.求抛物线的焦点坐标和准线方程. 3.求经过点的抛物线的标准方程. 二、问题探究 探究1:回顾抛物线的定义,依据定义,如何建立抛物线的标准方程? 探究2:方程是抛物线的标准方程吗?试将其与抛物线的标准方程辨析比较. 例1.已知抛物线的顶点在原点,对称轴为坐标轴,焦点在直线上,求抛物线的方程. 例2.已知抛物线的焦点在轴上,点是抛物线上的一点,到焦点的距离是5,求的值及抛物线的标准方程,准线方程. 例3.抛物线的.顶点在原点,对称轴为轴,它与圆相交,公共弦的长为.求该抛物线的方程,并写出其焦点坐标与准线方程. 三、思维训练 1.在平面直角坐标系中,若抛物线上的点到该抛物线的焦点的距离为6,则点的横坐标为. 2.抛物线的焦点到其准线的距离是. 3.设为抛物线的焦点,为该抛物线上三点,若,则=. 4.若抛物线上两点到焦点的距离和为5,则线段的中点到轴的距离是. 5.(理)已知抛物线,有一个内接直角三角形,直角顶点在原点,斜边长为,一直角边所在直线方程是,求此抛物线的方程。 四、课后巩固 1.抛物线的准线方程是. 2.抛物线上一点到焦点的距离为,则点到轴的距离为. 3.已知抛物线,焦点到准线的距离为,则. 4.经过点的抛物线的标准方程为. 5.顶点在原点,以双曲线的焦点为焦点的抛物线方程是. 6.抛物线的顶点在原点,以轴为对称轴,过焦点且倾斜角为的直线被抛物线所截得的弦长为8,求抛物线的方程. 7.若抛物线上有一点,其横坐标为,它到焦点的距离为10,求抛物线方程和点的坐标。 学习目标 1、掌握双曲线的范围、对称性、顶点、渐近线、离心率等几何性质 2、掌握标准方程中的几何意义 3、能利用上述知识进行相关的论证、计算、作双曲线的草图以及解决简单的实际问题 一、预习检查 1、焦点在x轴上,虚轴长为12,离心率为的双曲线的标准方程为、 2、顶点间的距离为6,渐近线方程为的双曲线的标准方程为、 3、双曲线的渐进线方程为、 4、设分别是双曲线的半焦距和离心率,则双曲线的一个顶点到它的一条渐近线的距离是、 二、问题探究 探究1、类比椭圆的几何性质写出双曲线的几何性质,画出草图并,说出它们的不同、 探究2、双曲线与其渐近线具有怎样的关系、 练习:已知双曲线经过,且与另一双曲线,有共同的渐近线,则此双曲线的标准方程是、 例1根据以下条件,分别求出双曲线的标准方程、 (1)过点,离心率、 (2)、是双曲线的左、右焦点,是双曲线上一点,且,,离心率为、 例2已知双曲线,直线过点,左焦点到直线的距离等于该双曲线的虚轴长的,求双曲线的离心率、 例3(理)求离心率为,且过点的双曲线标准方程、 三、思维训练 1、已知双曲线方程为,经过它的右焦点,作一条直线,使直线与双曲线恰好有一个交点,则设直线的斜率是、 2、椭圆的离心率为,则双曲线的离心率为、 3、双曲线的渐进线方程是,则双曲线的离心率等于=、 4、(理)设是双曲线上一点,双曲线的一条渐近线方程为、分别是双曲线的左、右焦点,若,则、 四、知识巩固 1、已知双曲线方程为,过一点(0,1),作一直线,使与双曲线无交点,则直线的斜率的集合是、 2、设双曲线的一条准线与两条渐近线交于两点,相应的焦点为,若以为直径的圆恰好过点,则离心率为、 3、已知双曲线的左,右焦点分别为,点在双曲线的右支上,且,则双曲线的离心率的值为、 4、设双曲线的半焦距为,直线过、两点,且原点到直线的距离为,求双曲线的离心率、 5、(理)双曲线的焦距为,直线过点和,且点(1,0)到直线的距离与点(-1,0)到直线的距离之和、求双曲线的离心率的取值范围、 学习目标 1.能根据抛物线的定义建立抛物线的标准方程; 2.会根据抛物线的标准方程写出其焦点坐标与准线方程; 3.会求抛物线的标准方程。 一、预习检查 1.完成下表: 标准方程 图形 焦点坐标 准线方程 开口方向 2.求抛物线的焦点坐标和准线方程. 3.求经过点的抛物线的标准方程. 二、问题探究 探究1:回顾抛物线的定义,依据定义,如何建立抛物线的标准方程? 探究2:方程是抛物线的标准方程吗?试将其与抛物线的标准方程辨析比较. 例1.已知抛物线的顶点在原点,对称轴为坐标轴,焦点在直线上,求抛物线的方程. 例2.已知抛物线的焦点在轴上,点是抛物线上的一点,到焦点的距离是5,求的值及抛物线的标准方程,准线方程. 例3.抛物线的顶点在原点,对称轴为轴,它与圆相交,公共弦的长为.求该抛物线的方程,并写出其焦点坐标与准线方程. 三、思维训练 1.在平面直角坐标系中,若抛物线上的点到该抛物线的焦点的距离为6,则点的横坐标为. 2.抛物线的焦点到其准线的距离是. 3.设为抛物线的焦点,为该抛物线上三点,若,则=. 4.若抛物线上两点到焦点的距离和为5,则线段的中点到轴的距离是. 5.(理)已知抛物线,有一个内接直角三角形,直角顶点在原点,斜边长为,一直角边所在直线方程是,求此抛物线的方程。 四、课后巩固 1.抛物线的准线方程是. 2.抛物线上一点到焦点的距离为,则点到轴的距离为. 3.已知抛物线,焦点到准线的距离为,则. 4.经过点的.抛物线的标准方程为. 5.顶点在原点,以双曲线的焦点为焦点的抛物线方程是. 6.抛物线的顶点在原点,以轴为对称轴,过焦点且倾斜角为的直线被抛物线所截得的弦长为8,求抛物线的方程. 7.若抛物线上有一点,其横坐标为,它到焦点的距离为10,求抛物线方程和点的坐标。 1.1 集合含义及其表示 教学目标:理解集合的概念;掌握集合的三种表示方法,理解集合中元素的三性及元素与集合的关系;掌握有关符号及术语。 教学过程: 一、阅读下列语句: 1) 全体自然数0,1,2,3,4,5, 2) 代数式 . 3) 抛物线 上所有的点 4) 今年本校高一(1)(或(2))班的全体学生 5) 本校实验室的所有天平 6) 本班级全体高个子同学 7) 著名的科学家 上述每组语句所描述的对象是否是确定的? 二、1)集合: 2)集合的元素: 3)集合按元素的个数分,可分为1)__________2)_________ 三、集合中元素的三个性质: 1)___________2)___________3)_____________ 四、元素与集合的关系:1)____________2)____________ 五、特殊数集专用记号: 1)非负整数集(或自然数集)______2)正整数集_____3)整数集_______ 4)有理数集______5)实数集_____ 6)空集____ 六、集合的表示方法: 1) 2) 3) 七、例题讲解: 例1、 中三个元素可构成某一个三角形的三边长,那么此三角形一定不是 ( ) A,直角三角形 B,锐角三角形 C,钝角三角形 D,等腰三角形 例2、用适当的方法表示下列集合,然后说出它们是有限集还是无限集? 1)地球上的四大洋构成的集合; 2)函数 的全体 值的集合; 3)函数 的全体自变量 的集合; 4)方程组 解的集合; 5)方程 解的集合; 6)不等式 的解的集合; 7)所有大于0且小于10的奇数组成的集合; 8)所有正偶数组成的集合; 例3、用符号 或 填空: 1) ______Q ,0_____N, _____Z,0_____ 2) ______ , _____ 3)3_____ , 4)设 , , 则 例4、用列举法表示下列集合; 1. 2. 3. 4. 例5、用描述法表示下列集合 1.所有被3整除的数 2.图中阴影部分点(含边界)的坐标的集合 课堂练习: 例6、设含有三个实数的集合既可以表示为 ,也可以表示为 ,则 的值等于___________ 例7、已知: ,若 中元素至多只有一个,求 的取值范围。 思考题:数集A满足:若 ,则 ,证明1):若2 ,则集合中还有另外两个元素;2)若 则集合A不可能是单元素集合。 小结: 作业 班级 姓名 学号 1. 下列集合中,表示同一个集合的是 ( ) A . M= ,N= B. M= ,N= C. M= ,N= D. M= ,N= 2. M= ,X= ,Y= , , .则 ( ) A . B. C. D. 3. 方程组 的解集是____________________. 4. 在(1)难解的题目,(2)方程 在实数集内的解,(3)直角坐标平面内第四象限的一些点,(4)很多多项式。能够组成集合的序号是________________. 5. 设集合 A= , B= , C= , D= ,E= 。 其中有限集的个数是____________. 6. 设 ,则集合 中所有元素的和为 7. 设x,y,z都是非零实数,则用列举法将 所有可能的值组成的集合表示为 8. 已知f(x)=x2-ax+b,(a,b R),A= ,B= , 若A= ,试用列举法表示集合B= 9. 把下列集合用另一种方法表示出来: (1) (2) (3) (4) 10. 设a,b为整数,把形如a+b 的一切数构成的集合记为M,设 ,试判断x+y,x-y,xy是否属于M,说明理由。 11. 已知集合A= (1) 若A中只有一个元素,求a的值,并求出这个元素; (2) 若A中至多只有一个元素,求a的取值集合。 12.若-3 ,求实数a的值。 【总结】20xx年已经到来,新的一年数学网会为您整理更多更好的文章,希望本文高一数学教案:集合含义及其表示能给您带来帮助! 学习目标: (1)理解函数的概念 (2)会用集合与对应语言来刻画函数, (3)了解构成函数的要素。 重点: 函数概念的理解 难点: 函数符号y=f(x)的理解 知识梳理: 自学课本P29—P31,填充以下空格。 1、设集合A是一个非空的实数集,对于A内 ,按照确定的对应法则f,都有 与它对应,则这种对应关系叫做集合A上的一个函数,记作 。 2、对函数 ,其中x叫做 ,x的取值范围(数集A)叫做这个函数的 ,所有函数值的集合 叫做这个函数的 ,函数y=f(x) 也经常写为 。 3、因为函数的值域被 完全确定,所以确定一个函数只需要 。 4、依函数定义,要检验两个给定的变量之间是否存在函数关系,只要检验: ① ;② 。 5、设a, b是两个实数,且a (1)满足不等式 的实数x的集合叫做闭区间,记作 。 (2)满足不等式a (3)满足不等式 或 的实数x的集合叫做半开半闭区间,分别表示为 ; 分别满足x≥a,x>a,x≤a,x 其中实数a, b表示区间的两端点。 完成课本P33,练习A 1、2;练习B 1、2、3。 例题解析 题型一:函数的概念 例1:下图中可表示函数y=f(x)的图像的只可能是( ) 练习:设M={x| },N={y| },给出下列四个图像,其中能表示从集合M到集合N的函数关系的有____个。 题型二:相同函数的判断问题 例2:已知下列四组函数:① 与y=1 ② 与y=x ③ 与 ④ 与 其中表示同一函数的是( ) A. ② ③ B. ② ④ C. ① ④ D. ④ 练习:已知下列四组函数,表示同一函数的是( ) A. 和 B. 和 C. 和 D. 和 题型三:函数的定义域和值域问题 例3:求函数f(x)= 的定义域 练习:课本P33练习A组 4. 例4:求函数 , ,在0,1,2处的函数值和值域。 当堂检测 1、下列各组函数中,表示同一个函数的是( A ) A、 B、 C、 D、 2、已知函数 满足f(1)=f(2)=0,则f(-1)的值是( C ) A、5 B、-5 C、6 D、-6 3、给出下列四个命题: ① 函数就是两个数集之间的对应关系; ② 若函数的定义域只含有一个元素,则值域也只含有一个元素; ③ 因为 的函数值不随 的变化而变化,所以 不是函数; ④ 定义域和对应关系确定后,函数的值域也就确定了. 其中正确的有( B ) A. 1 个 B. 2 个 C. 3个 D. 4 个 4、下列函数完全相同的是 ( D ) A. , B. , C. , D. , 5、在下列四个图形中,不能表示函数的图象的是 ( B ) 6、设 ,则 等于 ( D ) A. B. C. 1 D.0 7、已知函数 ,求 的值.( ) 教学目标: 1、掌握对数的运算性质,并能理解推导这些法则的依据和过程; 2、能较熟练地运用法则解决问题; 教学重点: 对数的运算性质 教学过程: 一、问题情境: 1、指数幂的运算性质; 2、问题:对数运算也有相应的运算性质吗? 二、学生活动: 1、观察教材P59的表2—3—1,验证对数运算性质、 2、理解对数的运算性质、 3、证明对数性质、 三、建构数学: 1)引导学生验证对数的运算性质、 2)推导和证明对数运算性质、 3)运用对数运算性质解题、 探究: ①简易语言表达:“积的对数=对数的和”…… ②有时逆向运用公式运算:如 ③真数的取值范围必须是:不成立;不成立、 ④注意:, 四、数学运用: 1、例题: 例1、(教材P60例4)求下列各式的值: (1);(2)125;(3)(补充)lg、 例2、(教材P60例4)已知,,求下列各式的值(结果保留4位小数) (1);(2)、 例3、用,,表示下列各式: 例4、计算: (1);(2);(3) 2、练习: P60(练习)1,2,4,5、 五、回顾小结: 本节课学习了以下内容:对数的`运算法则,公式的逆向使用、 六、课外作业: P63习题5 补充: 1、求下列各式的值: (1)6—3;(2)lg5+lg2;(3)3+、 2、用lgx,lgy,lgz表示下列各式: (1)lg(xyz);(2)lg;(3);(4)、 3、已知lg2=0、3010,lg3=0、4771,求下列各对数的值(精确到小数点后第四位) (1)lg6;(2)lg;(3)lg;(4)lg32、 教学目标 (1)正确理解充分条件、必要条件和充要条件的概念; (2)能正确判断是充分条件、必要条件还是充要条件; (3)培养学生的逻辑思维能力及归纳总结能力; (4)在充要条件的教学中,培养等价转化思想. 教学建议 (一)教材分析 1.知识结构 首先给出推断符号“”,并引出的意义,在此基础上讲述了充要条件的初步知识. 2.重点难点分析 本节的重点与难点是关于充要条件的判断. (1)充分但不必要条件、必要但不充分条件、充要条件、既不充分也不必要条件是重要的数学概念,主要用来区分命题的条件和结论之间的因果关系. (2)在判断条件和结论之间的因果关系中应该: ①首先分清条件是什么,结论是什么; ②然后尝试用条件推结论,再尝试用结论推条件.推理方法可以是直接证法、间接证法(即反证法),也可以举反例说明其不成立; ③最后再指出条件是结论的什么条件. (3)在讨论条件和条件的关系时,要注意: ①若,但,则是的充分但不必要条件; ②若,但,则是的必要但不充分条件; ③若,且,则是的充要条件; ④若,且,则是的充要条件; ⑤若,且,则是的既不充分也不必要条件. (4)若条件以集合的形式出现,结论以集合的形式出现,则借助集合知识,有助于充要条件的理解和判断. ①若,则是的充分条件; 显然,要使元素,只需就够了.类似地还有: ②若,则是的必要条件; ③若,则是的充要条件; ④若,且,则是的既不必要也不充分条件. (5)要证明命题的条件是充要条件,就既要证明原命题成立,又要证明它的逆命题成立.证明原命题即证明条件的充分性,证明逆命题即证明条件的必要性.由于原命题逆否命题,逆命题否命题,当我们证明某一命题有困难时,可以证明该命题的逆否命题成立,从而得出原命题成立. (二)教法建议 1.学习充分条件、必要条件和充要条件知识,要注意与前面有关逻辑初步知识内容相联系.充要条件中的,与四种命题中的,要求是一样的.它们可以是简单命题,也可以是不能判断真假的语句,也可以是含有逻辑联结词或“若则”形式的复合命题. 2.由于这节课概念性、理论性较强,一般的教学使学生感到枯燥乏味,为此,激发学生的学习兴趣是关键.教学中始终要注意以学生为主,让学生在自我思考、相互交流中去结概念“下定义”,去体会概念的本质属性. 3.由于“充要条件”与命题的真假、命题的条件与结论的相互关系紧密相关,为此,教学时可以从判断命题的真假入手,来分析命题的条件对于结论来说,是否充分,从而引入“充分条件”的概念,进而引入“必要条件”的概念. 4.教材中对“充分条件”、“必要条件”的定义没有作过多的解释说明,为了让学生能理解定义的合理性,在教学过程中,教师可以从一些熟悉的命题的条件与结论之间的关系来认识“充分条件”的概念,从互为逆否命题的等价性来引出“必要条件”的.概念. 教学设计示例 充要条件 教学目标: (1)正确理解充分条件、必要条件和充要条件的概念; (2)能正确判断是充分条件、必要条件还是充要条件; (3)培养学生的逻辑思维能力及归纳总结能力; (4)在充要条件的教学中,培养等价转化思想. 教学重点难点: 关于充要条件的判断 教学用具: 幻灯机或实物投影仪 教学过程设计 1.复习引入 练习:判断下列命题是真命题还是假命题(用幻灯投影): (1)若,则; (2)若,则; (3)全等三角形的面积相等; (4)对角线互相垂直的四边形是菱形; (5)若,则; (6)若方程有两个不等的实数解,则. (学生口答,教师板书.) (1)、(3)、(6)是真命题,(2)、(4)、(5)是假命题. 置疑:对于命题“若,则”,有时是真命题,有时是假命题.如何判断其真假的? 答:看能不能推出,如果能推出,则原命题是真命题,否则就是假命题. 对于命题“若,则”,如果由经过推理能推出,也就是说,如果成立,那么一定成立.换句话说,只要有条件就能充分地保证结论的成立,这时我们称条件是成立的充分条件,记作. 2.讲授新课 (板书充分条件的定义.) 一般地,如果已知,那么我们就说是成立的充分条件. 提问:请用充分条件来叙述上述(1)、(3)、(6)的条件与结论之间的关系. (学生口答) (1)“,”是“”成立的充分条件; (2)“三角形全等”是“三角形面积相等”成立的充分条件; (3)“方程的有两个不等的实数解”是“”成立的充分条件. 从另一个角度看,如果成立,那么其逆否命题也成立,即如果没有,也就没有,亦即是成立的必须要有的条件,也就是必要条件. (板书必要条件的定义.) 提出问题:用“充分条件”和“必要条件”来叙述上述6个命题. (学生口答). (1)因为,所以是的充分条件,是的必要条件; (2)因为,所以是的必要条件,是的充分条件; (3)因为“两三角形全等”“两三角形面积相等”,所以“两三角形全等”是“两三角形面积相等”的充分条件,“两三角形面积相等”是“两三角形全等”的必要条件; (4)因为“四边形的对角线互相垂直”“四边形是菱形”,所以“四边形的对角线互相垂直”是“四边形是菱形”的必要条件,“四边形是菱形”是“四边形的对角线互相垂直”的充分条件; (5)因为,所以是的必要条件,是的充分条件; (6)因为“方程的有两个不等的实根”“”,而且“方程的有两个不等的实根”“”,所以“方程的有两个不等的实根”是“”充分条件,而且是必要条件. 总结:如果是的充分条件,又是的必要条件,则称是的充分必要条件,简称充要条件,记作. (板书充要条件的定义.) 3.巩固新课 例1(用投影仪投影.) (学生活动,教师引导学生作出下面回答.) ①因为有理数一定是实数,但实数不一定是有理数,所以是的充分非必要条件,是的必要非充分条件; ②一定能推出,而不一定推出,所以是的充分非必要条件,是的必要非充分条件; ③、是奇数,那么一定是偶数;是偶数,、不一定都是奇数(可能都为偶数),所以是的充分非必要条件,是的必要非充分条件; ④表示或,所以是成立的必要非充分条件; ⑤由交集的定义可知且是成立的充要条件; ⑥由知且,所以是成立的充分非必要条件; ⑦由知或,所以是,成立的必要非充分条件; ⑧易知“是4的倍数”是“是6的倍数”成立的既非充分又非必要条件; (通过对上述问题的交流、思辩,在争论中得到了正确答案,并加深了对充分条件、必要条件的认识.) 例2已知是的充要条件,是的必要条件同时又是的充分条件,试与的关系.(投影) 解:由已知得, 所以是的充分条件,或是的必要条件. 4.小结回授 今天我们学习了充分条件、必要条件和充要条件的概念,并学会了判断条件A是B的什么条件,这为我们今后解决数学问题打下了等价转化的基础. 课内练习:课本(人教版,试验修订本,第一册(上))第35页练习l、2;第36页练习l、2. (通过练习,检查学生掌握情况,有针对性的进行讲评.) 5.课外作业:教材第36页 习题1.8 1、2、3. 教材分析:函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想. 教学目的: (1)通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用; (2)了解构成函数的要素; (3)会求一些简单函数的定义域和值域; (4)能够正确使用“区间”的符号表示某些函数的定义域; 教学重点:理解函数的模型化思想,用合与对应的语言来刻画函数; 教学难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示; 教学过程: 一、引入课题 1.复习初中所学函数的概念,强调函数的模型化思想; 2.阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想: (1)炮弹的射高与时间的变化关系问题; (2)南极臭氧空洞面积与时间的变化关系问题; (3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题 备用实例: 我国xxxx年4月份非典疫情统计: 日期222324252627282930 新增确诊病例数1061058910311312698152101 3.引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系; 4.根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系. 二、新课教学 (一)函数的有关概念 1.函数的概念: 设A、B是非空的数集,如果按照某个确定的'对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数(function). 记作:y=f(x),x∈A. 其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域(range). 注意: ○1“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”; ○2函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x. 2.构成函数的三要素: 定义域、对应关系和值域 3.区间的概念 (1)区间的分类:开区间、闭区间、半开半闭区间; (2)无穷区间; (3)区间的数轴表示. 4.一次函数、二次函数、反比例函数的定义域和值域讨论 (由学生完成,师生共同分析讲评) (二)典型例题 1.求函数定义域 课本P20例1 解:(略) 说明: ○1函数的定义域通常由问题的实际背景确定,如果课前三个实例; ○2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合; ○3函数的定义域、值域要写成集合或区间的形式. 巩固练习:课本P22第1题 2.判断两个函数是否为同一函数 课本P21例2 解:(略) 说明: ○1构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数) ○2两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。 巩固练习: ○1课本P22第2题 ○2判断下列函数f(x)与g(x)是否表示同一个函数,说明理由? (1)f(x)=(x-1)0;g(x)=1 (2)f(x)=x;g(x)= (3)f(x)=x2;f(x)=(x+1)2 (4)f(x)=|x|;g(x)= (三)课堂练习 求下列函数的定义域 (1) (2) (3) (4) (5) (6) 三、归纳小结,强化思想 从具体实例引入了函数的的概念,用集合与对应的语言描述了函数的定义及其相关概念,介绍了求函数定义域和判断同一函数的典型题目,引入了区间的概念来表示集合。 四、作业布置 课本P28习题1.2(A组)第1—7题(B组)第1题 教学目标 会运用图象判断单调性;理解函数的单调性,能判断或证明一些简单函数单调性;注意必须在定义域内或其子集内讨论函数的单调性。 重 点 函数单调性的证明及判断。 难 点 函数单调性证明及其应用。 一、复习引入 1、函数的定义域、值域、图象、表示方法 2、函数单调性 (1)单调增函数 (2)单调减函数 (3)单调区间 二、例题分析 例1、画出下列函数图象,并写出单调区间: (1) (2) (2) 例2、求证:函数 在区间 上是单调增函数。 例3、讨论函数 的单调性,并证明你的结论。 变(1)讨论函数 的单调性,并证明你的结论 变(2)讨论函数 的单调性,并证明你的结论。 例4、试判断函数 在 上的单调性。 三、随堂练习 1、判断下列说法正确的是 。 (1)若定义在 上的函数 满足 ,则函数 是 上的单调增函数; (2)若定义在 上的函数 满足 ,则函数 在 上不是单调减函数; (3)若定义在 上的函数 在区间 上是单调增函数,在区间 上也是单调增函数,则函数 是 上的单调增函数; (4)若定义在 上的函数 在区间 上是单调增函数,在区间 上也是单调增函数,则函数 是 上的单调增函数。 2、若一次函数 在 上是单调减函数,则点 在直角坐标平面的( ) A.上半平面 B.下半平面 C.左半平面 D.右半平面 3、函数 在 上是___ ___;函数 在 上是__ _____。 3.下图分别为函数 和 的图象,求函数 和 的单调增区间。 4、求证:函数 是定义域上的单调减函数。 四、回顾小结 1、函数单调性的判断及证明。 课后作业 一、基础题 1、求下列函数的单调区间 (1) (2) 2、画函数 的图象,并写出单调区间。 二、提高题 3、求证:函数 在 上是单调增函数。 4、若函数 ,求函数 的单调区间。 5、若函数 在 上是增函数,在 上是减函数,试比较 与 的大小。 三、能力题 6、已知函数 ,试讨论函数f(x)在区间 上的单调性。 变(1)已知函数 ,试讨论函数f(x)在区间 上的单调性。 学习是一个潜移默化、厚积薄发的过程。编辑老师编辑了高一数学教案:数列,希望对您有所帮助! 教学目标 1.使学生理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项. (1)理解数列是按一定顺序排成的一列数,其每一项是由其项数唯一确定的. (2)了解数列的各种表示方法,理解通项公式是数列第项与项数的关系式,能根据通项公式写出数列的前几项,并能根据给出的一个数列的前几项写出该数列的一个通项公式. (3)已知一个数列的递推公式及前若干项,便确定了数列,能用代入法写出数列的前几项. 2.通过对一列数的观察、归纳,写出符合条件的一个通项公式,培养学生的观察能力和抽象概括能力. 3.通过由求的过程,培养学生严谨的科学态度及良好的思维习惯. 教学建议 (1)为激发学生学习数列的兴趣,体会数列知识在实际生活中的作用,可由实际问题引入,从中抽象出数列要研究的问题,使学生对所要研究的内容心中有数,如书中所给的例子,还有物品堆放个数的计算等. (2)数列中蕴含的函数思想是研究数列的指导思想,应及早引导学生发现数列与函数的关系.在教学中强调数列的项是按一定顺序排列的,“次序”便是函数的自变量,相同的数组成的数列,次序不同则就是不同的数列.函数表示法有列表法、图象法、解析式法,类似地,数列就有列举法、图示法、通项公式法.由于数列的自变量为正整数,于是就有可能相邻的两项(或几项)有关系,从而数列就有其特殊的表示法——递推公式法. (3)由数列的通项公式写出数列的前几项是简单的代入法,教师应精心设计例题,使这一例题为写通项公式作一些准备,尤其是对程度差的学生,应多举几个例子,让学生观察归纳通项公式与各项的结构关系,尽量为写通项公式提供帮助. (4)由数列的前几项写出数列的一个通项公式使学生学习中的一个难点,要帮助学生分析各项中的结构特征(整式,分式,递增,递减,摆动等),由学生归纳一些规律性的结论,如正负相间用来调整等.如果学生一时不能写出通项公式,可让学生依据前几项的规律,猜想该数列的下一项或下几项的值,以便寻求项与项数的关系. (5)对每个数列都有求和问题,所以在本节课应补充数列前项和的概念,用表示的问题是重点问题,可先提出一个具体问题让学生分析与的关系,再由特殊到一般,研究其一般规律,并给出严格的推理证明(强调的表达式是分段的);之后再到特殊问题的解决,举例时要兼顾结果可合并及不可合并的情况. (6)给出一些简单数列的通项公式,可以求其最大项或最小项,又是函数思想与方法的体现,对程度好的学生应提出这一问题,学生运用函数知识是可以解决的. 上述提供的高一数学教案:数列希望能够符合大家的实际需要! 教学目标 1.理解分数指数幂的含义,了解实数指数幂的意义。 2.掌握有理数指数幂的运算性质,灵活的运用乘法公式进行有理数指数幂的运算和化简,会进行根式与分数指数幂的相互转化。 教学重点 1.分数指数幂含义的理解。 2.有理数指数幂的运算性质的理解。 3.有理数指数幂的运算和化简。 教学难点 1.分数指数幂含义的理解。 2.有理数指数幂的运算和化简。 教学过程 一.问题情景 上节课研究了根式的意义及根式的性质,那么根式与指数幂有什么关系?整数指数幂有那些运算性质? 二.学生活动 1.说出下列各式的意义,并指出其结果的指数,被开方数的指数及根指数三者之间的'关系? 2.从上述问题中,你能得到的结论为? 3.(a0)及(a0)能否化成指数幂的形式? 三.数学理论 正分数指数幂的意义:=(a0,m,n均为正整数) 负分数指数幂的意义:=(a0,m,n均为正整数) 1.规定:0的正分数指数幂仍是0,即=0 0的负分数指数幂无意义。 2.规定了分数指数幂的意义后,指数的概念从整数指数推广到了有理数指数,因而整数指数幂的运算性质同样适用于有理数指数幂。 四.数学运用 例1求值: 例2用分数指数幂的形式表示下列各式(a0) 例3化简 例4化简 五.回顾小结 1.分数指数幂的意义。=(0,m,n) 无意义 2.有理数指数幂的运算性质 3.整式运算律及乘法公式在分数指数幂运算中仍适用 4.指数概念从整数指数幂推广到有理数指数幂,同样可以推广到实数指数幂,请同学们阅读P47的阅读部分 练习P47-48练习1,2,3,4 六.课外作业 一、教学目标 知识与技能: 理解任意角的概念(包括正角、负角、零角)与区间角的概念。 过程与方法: 会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写。 情感态度与价值观: 1、提高学生的推理能力; 2、培养学生应用意识。 二、教学重点、难点: 教学重点: 任意角概念的理解;区间角的集合的书写。 教学难点: 终边相同角的集合的表示;区间角的集合的书写。 三、教学过程 (一)导入新课 1、回顾角的定义 ①角的第一种定义是有公共端点的两条射线组成的图形叫做角。 ②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。 (二)教学新课 1、角的有关概念: ①角的定义: 角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。 ②角的名称: 注意: ⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”; ⑵零角的终边与始边重合,如果α是零角α =0°; ⑶角的概念经过推广后,已包括正角、负角和零角。 ⑤练习:请说出角α、β、γ各是多少度? 2、象限角的概念: ①定义:若将角顶点与原点重合,角的始边与x轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角。 例1、如图⑴⑵中的角分别属于第几象限角? 一、学习目标: 知识与技能:理解直线与平面、平面与平面平行的性质定理的含义, 并会应用性质解决问题 过程与方法:能应用文字语言、符号语言、图形语言准确地描述直线与平面、平面与平面的性质定理 情感态度与价值观:通过自主学习、主动参与、积极探究的学习过程,激发学生学习数学的自信心和积极性,培养学生良好的思维习惯,渗透化归与转化的数学思想,体会事物之间相互转化和理论联系实际的辩证唯物主义思想方法 二、学习重、难点 学习重点: 直线与平面、平面与平面平行的性质及其应用 学习难点: 将空间问题转化为平面问题的方法, 三、学法指导及要求: 1、限定45分钟完成,注意逐字逐句仔细审题,认真思考、独立规范作答,不会的先绕过,做好记号。 2、把学案中自己易忘、易出错的知识点和疑难问题以及解题方法规律,及时整理在解题本,多复习记忆。3、A:自主学习;B:合作探究;C:能力提升4、小班、重点班完成全部,平行班完成A.B类题 四、知识链接: 1.空间直线与直线的位置关系 2.直线与平面的位置关系 3.平面与平面的位置关系 4.直线与平面平行的判定定理的符号表示 5.平面与平面平行的判定定理的符号表示 五、学习过程: A问题1: 1)如果一条直线与一个平面平行,那么这条直线与这个平面内的直线有哪些位置关系? (观察长方体) 2)如果一条直线和一个平面平行,如何在这个平面内做一条直线与已知直线平行? (可观察教室内灯管和地面) A问题2: 一条直线与平面平行,这条直线和这个平面内直线的位置关系有几种可能? A问题3:如果一条直线 与平面平行,在什么条件下直线 与平面内的直线平行呢? 由于直线 与平面内的任何直线无公共点,所以过直线 的某一平面,若与平面相交,则直线 就平行于这条交线 B自主探究1:已知: ∥, ,=b。求证: ∥b。 直线与平面平行的性质定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行 符号语言: 线面平行性质定理作用:证明两直线平行 思想:线面平行 线线平行 例1:有一块木料如图,已知棱BC平行于面AC(1)要经过木料表面ABCD 内的一点P和棱BC将木料锯开,应怎样画线?(2)所画的线和面AC有什么关系? 例2:已知平面外的两条平行直线中的一条平行于这个平面,求证:另一条也平行于这个平面。 问题5:两个平面平行,那么其中一个平面内的直线与另一平面有什么样的关系?两个平面平行,那么其中一个平面内的直线与另一平面内的直线有何关系? 自主探究2:如图,平面,,满足∥,=a,=b,求证:a∥b 平面与平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行 符号语言: 面面平行性质定理作用:证明两直线平行 思想:面面平行 线线平行 例3 求证:夹在两个平行平面间的.平行线段相等 六、达标检测: A1.61页练习 A2.下列判断正确的是( ) A. ∥, ,则 ∥b B. =P,b ,则 与b不平行 C. ,则a∥ D. ∥,b∥,则 ∥b B3.直线 ∥平面,P,过点P平行于 的直线( ) A.只有一条,不在平面内 B.有无数条,不一定在内 C.只有一条,且在平面内 D.有无数条,一定在内 B4.下列命题错误的是 ( ) A. 平行于同一条直线的两个平面平行或相交 B. 平行于同一个平面的两个平面平行 C. 平行于同一条直线的两条直线平行 D. 平行于同一个平面的两条直线平行或相交 B5. 平行四边形EFGH的四个顶点E、F、G、H、分别在空间四边形ABCD的四条边AB、BC、CD、AD、上,又EF∥BD,则 ( ) A. EH∥BD,BD不平行与FG B. FG∥BD,EH不平行于BD C. EH∥BD,FG∥BD D. 以上都不对 B6.若直线 ∥b, ∥平面,则直线b与平面的位置关系是 B7一个平面上有两点到另一个平面的距离相等,则这两个平面 七、小结与反思: 本文题目:高一数学教案:对数函数及其性质 2.2.2 对数函数及其性质(二) 内容与解析 (一) 内容:对数函数及其性质(二)。 (二) 解析:从近几年高考试题看,主要考查对数函数的性质,一般综合在对数函数中考查.题型主要是选择题和填空题,命题灵活.学习本部分时,要重点掌握对数的运算性质和技巧,并熟练应用. 一、 目标及其解析: (一) 教学目标 (1) 了解对数函数在生产实际中的简单应用.进一步理解对数函数的图象和性质; (2) 学习反函数的概念,理解对数函数和指数函数互为反函数,能够在同一坐标上看出互为反函数的两个函数的图象性质.. (二) 解析 (1)在对数函数 中,底数 且 ,自变量 ,函数值 .作为对数函数的三个要点,要做到道理明白、记忆牢固、运用准确. (2)反函数求法:①确定原函数的值域即新函数的定义域.②把原函数y=f(x)视为方程,用y表示出x.③把x、y互换,同时标明反函数的定义域. 二、 问题诊断分析 在本节课的教学中,学生可能遇到的`问题是不易理解反函数,熟练掌握其转化关系是学好对数函数与反函数的基础。 三、 教学支持条件分析 在本节课一次递推的教学中,准备使用PowerPoint 20xx。因为使用PowerPoint 20xx,有利于提供准确、最核心的文字信息,有利于帮助学生顺利抓住老师上课思路,节省老师板书时间,让学生尽快地进入对问题的分析当中。 四、 教学过程 问题一. 对数函数模型思想及应用: ① 出示例题:溶液酸碱度的测量问题:溶液酸碱度pH的计算公式 ,其中 表示溶液中氢离子的浓度,单位是摩尔/升. (Ⅰ)分析溶液酸碱读与溶液中氢离子浓度之间的关系? (Ⅱ)纯净水 摩尔/升,计算纯净水的酸碱度. ②讨论:抽象出的函数模型? 如何应用函数模型解决问题? 强调数学应用思想 问题二.反函数: ① 引言:当一个函数是一一映射时, 可以把这个函数的因变量作为一个新函数的自变量, 而把这个函数的自变量新的函数的因变量. 我们称这两个函数为反函数(inverse function) ② 探究:如何由 求出x? ③ 分析:函数 由 解出,是把指数函数 中的自变量与因变量对调位置而得出的. 习惯上我们通常用x表示自变量,y表示函数,即写为 . 那么我们就说指数函数 与对数函数 互为反函数 ④ 在同一平面直角坐标系中,画出指数函数 及其反函数 图象,发现什么性质? ⑤ 分析:取 图象上的几个点,说出它们关于直线 的对称点的坐标,并判断它们是否在 的图象上,为什么? ⑥ 探究:如果 在函数 的图象上,那么P0关于直线 的对称点在函数 的图象上吗,为什么? 由上述过程可以得到什么结论?(互为反函数的两个函数的图象关于直线 对称) ⑦练习:求下列函数的反函数: ; (师生共练 小结步骤:解x ;习惯表示;定义域) (二)小结:函数模型应用思想;反函数概念;阅读P84材料 五、 目标检测 1.(20xx全国卷Ⅱ文)函数y= (x 0)的反函数是 A. (x 0) B. (x 0) C. (x 0) D. (x 0) 1.B 解析:本题考查反函数概念及求法,由原函数x 0可知A、C错,原函数y 0可知D错,选B. 2. (20xx广东卷理)若函数 是函数 的反函数,其图像经过点 ,则 ( ) A. B. C. D. 2. B 解析: ,代入 ,解得 ,所以 ,选B. 3. 求函数 的反函数 3.解析:显然y0,反解 可得, ,将x,y互换可得 .可得原函数的反函数为 . 【总结】20xx年已经到来,新的一年数学网会为您整理更多更好的文章,希望本文高一数学教案:对数函数及其性质能给您带来帮助! 学习目标 1. 根据具体函数图象,能够借助计算器用二分法求相应方程的近似解; 2. 通过用二分法求方程的近似解,使学生体会函数零点与方程根之间的联系,初步形成用函数观点处理问题的意识. 旧知提示 (预习教材P89~ P91,找出疑惑之处) 复习1:什么叫零点?零点的等价性?零点存在性定理? 对于函数 ,我们把使 的实数x叫做函数 的零点. 方程 有实数根 函数 的图象与x轴 函数 . 如果函数 在区间 上的图象是连续不断的一条曲线,并且有 ,那么,函数 在区间 内有零点. 复习2:一元二次方程求根公式? 三次方程? 四次方程? 合作探究 探究:有12个小球,质量均匀,只有一个是比别的球重的,你用天平称几次可以找出这个球的,要求次数越少越好. 解法:第一次,两端各放 个球,低的那一端一定有重球; 第二次,两端各放 个球,低的那一端一定有重球; 第三次,两端各放 个球,如果平衡,剩下的就是重球,否则,低的就是重球. 思考:以上的方法其实这就是一种二分法的思想,采用类似的方法,如何求 的零点所在区间?如何找出这个零点? 新知:二分法的思想及步骤 对于在区间 上连续不断且 0的函数 ,通过不断的把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫二分法(bisection). 反思: 给定精度,用二分法求函数 的零点近似值的步骤如何呢? ①确定区间 ,验证 ,给定精度 ②求区间 的中点 ;[] ③计算 : 若 ,则 就是函数的零点; 若 ,则令 (此时零点 ); 若 ,则令 (此时零点 ); ④判断是否达到精度即若 ,则得到零点零点值a(或b);否则重复步骤②~④. 典型例题 例1 借助计算器或计算机,利用二分法求方程 的近似解. 练1. 求方程 的解的个数及其大致所在区间. 练2.求函数 的一个正数零点(精确到 ) 零点所在区间 中点函数值符号 区间长度 练3. 用二分法求 的近似值. 课堂小结 ① 二分法的概念;②二分法步骤;③二分法思想. 知识拓展 高次多项式方程公式解的探索史料 在十六世纪,已找到了三次和四次函数的求根公式,但对于高于4次的函数,类似的努力却一直没有成功,到了十九世纪,根据阿贝尔(Abel)和伽罗瓦(Galois)的研究,人们认识到高于4次的代数方程不存在求根公式,亦即,不存在用四则运算及根号表示的一般的公式解.同时,即使对于3次和4次的代数方程,其公式解的表示也相当复杂,一般来讲并不适宜作具体计算.因此对于高次多项式函数及其它的一些函数,有必要寻求其零点近似解的方法,这是一个在计算数学中十分重要的课题. 学习评价 1. 若函数 在区间 上为减函数,则 在 上( ). A. 至少有一个零点 B. 只有一个零点 C. 没有零点 D. 至多有一个零点 2. 下列函数图象与 轴均有交点,其中不能用二分法求函数零点近似值的是(). 3. 函数 的零点所在区间为( ). A. B. C. D. 4. 用二分法求方程 在区间[2,3]内的`实根,由计算器可算得 , , ,那么下一个有根区间为 . 课后作业 1.若函数f(x)是奇函数,且有三个零点x1、x2、x3,则x1+x2+x3的值为() A.-1 B.0 C.3 D.不确定 2.已知f(x)=-x-x3,x[a,b],且f(a)f(b)0,则f(x)=0在[a,b]内() A.至少有一实数根 B.至多有一实数根 C.没有实数根 D.有惟一实数根 3.设函数f(x)=13x-lnx(x0)则y=f(x)() A.在区间1e,1,(1,e)内均有零点 B.在区间1e,1, (1,e)内均无零点 C.在区间1e,1内有零点;在区间(1,e)内无零点[] D.在区间1e,1内无零点,在区间(1,e)内有零点 4.函数f(x)=ex+x-2的零点所在的一个区间是() A.(-2,-1) B.(-1,0) C.(0,1) D.(1,2) 5.若方程x2-3x+mx+m=0的两根均在(0,+)内,则m的取值范围是() A.m1 B.01 D.0 6.函数f(x)=(x-1)ln(x-2)x-3的零点有() A.0个 B.1个 C.2个 D.3个 7.函数y=3x-1x2的一个零点是() A.-1 B.1 C.(-1,0) D.(1,0) 8.函数f(x)=ax2+bx+c,若f(1)0,f(2)0,则f(x)在(1,2)上零点的个数为( ) A.至多有一个 B.有一个或两个 C.有且仅有一个 D.一个也没有 9.根据表格中的数据,可以判定方程ex-x-2=0的一个根所在的区间为() x -1 0 1 2 3 ex 0.37 1 2.72 7.39 20.09 A.(-1,0) B.(0,1) C.(1,2) D.(2,3) 10.求函数y=x3-2x2-x+2的零点,并画出它的简图. 【总结】 20xx年数学网为小编在此为您收集了此文章高一数学教案:用二分法求方程的近似解,今后还会发布更多更好的文章希望对大家有所帮助,祝您在数学网学习愉快! 学习目标 1.函数奇偶性的概念 2.由函数图象研究函数的奇偶性 3.函数奇偶性的判断 重点:能运用函数奇偶性的定义判断函数的奇偶性 难点:理解函数的奇偶性 知识梳理: 1.轴对称图形: 2中心对称图形: 【概念探究】 1、 画出函数 ,与 的图像;并观察两个函数图像的对称性。 2、 求出 , 时的函数值,写出 , 。 结论: 。 3、 奇函数:___________________________________________________ 4、 偶函数:______________________________________________________ 【概念深化】 (1)、强调定义中任意二字,奇偶性是函数在定义域上的整体性质。 (2)、奇函数偶函数的定义域关于原点对称。 5、奇函数与偶函数图像的对称性: 如果一个函数是奇函数,则这个函数的图像是以坐标原点为对称中心的__________。反之,如果一个函数的图像是以坐标原点为对称中心的中心对称图形,则这个函数是___________。 如果一个函数是偶函数,则这个函数的图像是以 轴为对称轴的__________。反之,如果一个函数的图像是关于 轴对称,则这个函数是___________。 6. 根据函数的奇偶性,函数可以分为____________________________________. 题型一:判定函数的奇偶性。 例1、判断下列函数的奇偶性: (1) (2) (3) (4) (5) 练习:教材第49页,练习A第1题 总结:根据例题,你能给出用定义判断函数奇偶性的步骤? 题型二:利用奇偶性求函数解析式 例2:若f(x)是定义在R上的奇函数,当x0时,f(x)=x(1-x),求当 时f(x)的解析式。 练习:若f(x)是定义在R上的奇函数,当x0时,f(x)=x|x-2|,求当x0时f(x)的解析式。 已知定义在实数集 上的奇函数 满足:当x0时, ,求 的表达式 题型三:利用奇偶性作函数图像 例3 研究函数 的性质并作出它的图像 练习:教材第49练习A第3,4,5题,练习B第1,2题 当堂检测 1 已知 是定义在R上的奇函数,则( D ) A. B. C. D. 2 如果偶函数 在区间 上是减函数,且最大值为7,那么 在区间 上是( B ) A. 增函数且最小值为-7 B. 增函数且最大值为7 C. 减函数且最小值为-7 D. 减函数且最大值为7 3 函数 是定义在区间 上的偶函数,且 ,则下列各式一定成立的是(C ) A. B. C. D. 4 已知函数 为奇函数,若 ,则 -1 5 若 是偶函数,则 的'单调增区间是 6 下列函数中不是偶函数的是(D ) A B C D 7 设f(x)是R上的偶函数,切在 上单调递减,则f(-2),f(- ),f(3)的大小关系是( A ) A B f(- )f(-2) f(3) C f(- ) 8 奇函数 的图像必经过点( C ) A (a,f(-a)) B (-a,f(a)) C (-a,-f(a)) D (a,f( )) 9 已知函数 为偶函数,其图像与x轴有四个交点,则方程f(x)=0的所有实根之和是( A ) A 0 B 1 C 2 D 4 10 设f(x)是定义在R上的奇函数,且x0时,f(x)= ,则f(-2)=_-5__ 11若f(x)在 上是奇函数,且f(3)_f(-1) 12.解答题 用定义判断函数 的奇偶性。 13定义证明函数的奇偶性 已知函数 在区间D上是奇函数,函数 在区间D上是偶函数,求证: 是奇函数 14利用函数的奇偶性求函数的解析式: 已知分段函数 是奇函数,当 时的解析式为 ,求这个函数在区间 上的解析表达式。 第二十四教时 教材:倍角公式,推导和差化积及积化和差公式 目的:继续复习巩固倍角公式,加强对公式灵活运用的训练;同时,让学生推导出和差化积和积化和差公式,并对此有所了解。 过程: 一、 复习倍角公式、半角公式和万能公式的推导过程: 例一、 已知 , ,tan = ,tan = ,求2 + (《教学与测试》P115 例三) 解: 又∵tan2 0,tan 0 , 2 + = 例二、 已知sin cos = , ,求 和tan的值 解:∵sin cos = 化简得: ∵ 即 二、 积化和差公式的推导 sin( + ) + sin( ) = 2sincos sincos = [sin( + ) + sin( )] sin( + ) sin( ) = 2cossin cossin = [sin( + ) sin( )] cos( + ) + cos( ) = 2coscos coscos = [cos( + ) + cos( )] cos( + ) cos( ) = 2sinsin sinsin = [cos( + ) cos( )] 这套公式称为三角函数积化和差公式,熟悉结构,不要求记忆,它的优点在于将积式化为和差,有利于简化计算。(在告知公式前提下) 例三、 求证:sin3sin3 + cos3cos3 = cos32 证:左边 = (sin3sin)sin2 + (cos3cos)cos2 = (cos4 cos2)sin2 + (cos4 + cos2)cos2 = cos4sin2 + cos2sin2 + cos4cos2 + cos2cos2 = cos4cos2 + cos2 = cos2(cos4 + 1) = cos22cos22 = cos32 = 右边 原式得证 三、 和差化积公式的推导 若令 + = , = ,则 , 代入得: 这套公式称为和差化积公式,其特点是同名的正(余)弦才能使用,它与积化和差公式相辅相成,配合使用。 例四、 已知cos cos = ,sin sin = ,求sin( + )的值 解:∵cos cos = , ① sin sin = , ② 四、 小结:和差化积,积化和差 五、 作业:《课课练》P3637 例题推荐 13 P3839 例题推荐 13 P40 例题推荐 13 本文题目:高一数学教案:对数函数及其性质 2.2.2 对数函数及其性质(二) 内容与解析 (一) 内容:对数函数及其性质(二)。 (二) 解析:从近几年高考试题看,主要考查对数函数的性质,一般综合在对数函数中考查.题型主要是选择题和填空题,命题灵活.学习本部分时,要重点掌握对数的运算性质和技巧,并熟练应用. 一、 目标及其解析: (一) 教学目标 (1) 了解对数函数在生产实际中的简单应用.进一步理解对数函数的图象和性质; (2) 学习反函数的概念,理解对数函数和指数函数互为反函数,能够在同一坐标上看出互为反函数的两个函数的图象性质.. (二) 解析 (1)在对数函数 中,底数 且 ,自变量 ,函数值 .作为对数函数的三个要点,要做到道理明白、记忆牢固、运用准确. (2)反函数求法:①确定原函数的值域即新函数的定义域.②把原函数y=f(x)视为方程,用y表示出x.③把x、y互换,同时标明反函数的定义域. 二、 问题诊断分析 在本节课的教学中,学生可能遇到的问题是不易理解反函数,熟练掌握其转化关系是学好对数函数与反函数的基础。 三、 教学支持条件分析 在本节课一次递推的教学中,准备使用PowerPoint 20xx。因为使用PowerPoint 20xx,有利于提供准确、最核心的文字信息,有利于帮助学生顺利抓住老师上课思路,节省老师板书时间,让学生尽快地进入对问题的分析当中。 四、 教学过程 问题一. 对数函数模型思想及应用: ① 出示例题:溶液酸碱度的测量问题:溶液酸碱度pH的计算公式 ,其中 表示溶液中氢离子的浓度,单位是摩尔/升. (Ⅰ)分析溶液酸碱读与溶液中氢离子浓度之间的关系? (Ⅱ)纯净水 摩尔/升,计算纯净水的酸碱度. ②讨论:抽象出的函数模型? 如何应用函数模型解决问题? 强调数学应用思想 问题二.反函数: ① 引言:当一个函数是一一映射时, 可以把这个函数的因变量作为一个新函数的自变量, 而把这个函数的自变量新的函数的因变量. 我们称这两个函数为反函数(inverse function) ② 探究:如何由 求出x? ③ 分析:函数 由 解出,是把指数函数 中的自变量与因变量对调位置而得出的. 习惯上我们通常用x表示自变量,y表示函数,即写为 . 那么我们就说指数函数 与对数函数 互为反函数 ④ 在同一平面直角坐标系中,画出指数函数 及其反函数 图象,发现什么性质? ⑤ 分析:取 图象上的几个点,说出它们关于直线 的对称点的坐标,并判断它们是否在 的.图象上,为什么? ⑥ 探究:如果 在函数 的图象上,那么P0关于直线 的对称点在函数 的图象上吗,为什么? 由上述过程可以得到什么结论?(互为反函数的两个函数的图象关于直线 对称) ⑦练习:求下列函数的反函数: ; (师生共练 小结步骤:解x ;习惯表示;定义域) (二)小结:函数模型应用思想;反函数概念;阅读P84材料 五、 目标检测 1.(20xx全国卷Ⅱ文)函数y= (x 0)的反函数是 A. (x 0) B. (x 0) C. (x 0) D. (x 0) 1.B 解析:本题考查反函数概念及求法,由原函数x 0可知A、C错,原函数y 0可知D错,选B. 2. (20xx广东卷理)若函数 是函数 的反函数,其图像经过点 ,则 ( ) A. B. C. D. 2. B 解析: ,代入 ,解得 ,所以 ,选B. 3. 求函数 的反函数 3.解析:显然y0,反解 可得, ,将x,y互换可得 .可得原函数的反函数为 . 【总结】20xx年已经到来,新的一年数学网会为您整理更多更好的文章,希望本文高一数学教案:对数函数及其性质能给您带来帮助! 教学目标: 1、结合实际问题情景,理解分层抽样的必要性和重要性; 2、学会用分层抽样的方法从总体中抽取样本; 3、并对简单随机抽样、系统抽样及分层抽样方法进行比较,揭示其相互关系。 教学重点: 通过实例理解分层抽样的方法。 教学难点: 分层抽样的步骤。 教学过程: 一、问题情境 1、复习简单随机抽样、系统抽样的概念、特征以及适用范围。 2、实例:某校高一、高二和高三年级分别有学生名,为了了解全校学生的视力情况,从中抽取容量为的.样本,怎样抽取较为合理? 二、学生活动 能否用简单随机抽样或系统抽样进行抽样,为什么? 指出由于不同年级的学生视力状况有一定的差异,用简单随机抽样或系统抽样进行抽样不能准确反映客观实际,在抽样时不仅要使每个个体被抽到的机会相等,还要注意总体中个体的层次性。 由于样本的容量与总体的个体数的比为100∶2500=1∶25, 所以在各年级抽取的个体数依次是。即40,32,28。 三、建构数学 1、分层抽样:当已知总体由差异明显的几部分组成时,为了使样本更客观地反映总体的情况,常将总体按不同的特点分成层次比较分明的几部分,然后按各部分在总体中所占的比进行抽样,这种抽样叫做分层抽样,其中所分成的各部分叫“层”。 说明: ①分层抽样时,由于各部分抽取的个体数与这一部分个体数的比等于样本容量与总体的个体数的比,每一个个体被抽到的可能性都是相等的; ②由于分层抽样充分利用了我们所掌握的信息,使样本具有较好的代表性,而且在各层抽样时可以根据具体情况采取不同的抽样方法,所以分层抽样在实践中有着非常广泛的应用。 教学目标 1、使学生掌握指数函数的概念,图象和性质。 (1)能根据定义判断形如什么样的函数是指数函数,了解对底数的限制条件的合理性,明确指数函数的定义域。 (2)能在基本性质的指导下,用列表描点法画出指数函数的图象,能从数形两方面认识指数函数的性质。 (3)能利用指数函数的性质比较某些幂形数的大小,会利用指数函数的图象画出形如的图象。 2、通过对指数函数的概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合的思想方法。 3、通过对指数函数的研究,让学生认识到数学的应用价值,激发学生学习数学的兴趣。使学生善于从现实生活中数学的发现问题,解决问题。 教学建议 教材分析 (1)指数函数是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以指数函数应重点研究。 (2)本节的教学重点是在理解指数函数定义的基础上掌握指数函数的图象和性质。难点是对底数在和时,函数值变化情况的区分。 (3)指数函数是学生完全陌生的一类函数,对于这样的`函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从指数函数的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究。 教法建议 (1)关于指数函数的定义按照课本上说法它是一种形式定义即解析式的特征必须是的样子,不能有一点差异,诸如等都不是指数函数。 (2)对底数的限制条件的理解与认识也是认识指数函数的重要内容。如果有可能尽量让学生自己去研究对底数,指数都有什么限制要求,教师再给予补充或用具体例子加以说明,因为对这个条件的认识不仅关系到对指数函数的认识及性质的分类讨论,还关系到后面学习对数函数中底数的认识,所以一定要真正了解它的由来。 关于指数函数图象的绘制,虽然是用列表描点法,但在具体教学中应避免描点前的盲目列表计算,也应避免盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象。 一、教材 首先谈谈我对教材的理解,《两条直线平行与垂直的判定》是人教A版高中数学必修2第三章3.1.2的内容,本节课的内容是两条直线平行与垂直的判定的推导及其应用,学生对于直线平行和垂直的概念已经十分熟悉,并且在上节课学习了直线的倾斜角与斜率,为本节课的学习打下了基础。 二、学情 教材是我们教学的工具,是载体。但我们的教学是要面向学生的,高中学生本身身心已经趋于成熟,管理与教学难度较大,那么为了能够成为一个合格的高中教师,深入了解所面对的学生可以说是必修课。本阶段的学生思维能力已经非常成熟,能够有自己独立的思考,所以应该积极发挥这种优势,让学生独立思考探索。 三、教学目标 根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标: (一)知识与技能 掌握两条直线平行与垂直的判定,能够根据其判定两条直线的位置关系。 (二)过程与方法 在经历两条直线平行与垂直的判定过程中,提升逻辑推理能力。 (三)情感态度价值观 在猜想论证的过程中,体会数学的严谨性。 四、教学重难点 我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的教学重点是:两条直线平行与垂直的判定。本节课的.教学难点是:两条直线平行与垂直的判定的推导。 五、教法和学法 现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用讲授法、练习法、小组合作等教学方法。 六、教学过程 下面我将重点谈谈我对教学过程的设计。 (一)新课导入 首先是导入环节,那么我采用复习导入,回顾上节课所学的直线的倾斜角与斜率并顺势提问:能否通过直线的斜率,来判断两条直线的位置关系呢? 利用上节课所学的知识进行导入,很好的克服学生的畏难情绪。 (二)新知探索 接下来是教学中最重要的新知探索环节,我主要采用讲解法、小组合作、启发法等。 【学习目标】 1、感受数学探索的成功感,提高学习数学的兴趣; 2、经历诱导公式的探索过程,感悟由未知到已知、复杂到简单的数学转化思想。 3、能借助单位圆的对称性理解记忆诱导公式,能用诱导公式进行简单应用。 【学习重点】三角函数的诱导公式的理解与应用 【学习难点】诱导公式的推导及灵活运用 【知识链接】(1)单位圆中任意角α的正弦、余弦的定义 (2)对称性:已知点P(x,),那么,点P关于x轴、轴、原点对称的点坐标 【学习过程】 一、预习自学 阅读书第19页——20页内容,通过对-α、π-α、π+α、2π-α、α的终边与单位圆的交点的对称性规律的探究,结合单位圆中任意角的正弦、余弦的定义,从中自我发现归纳出三角函数的诱导公式,并写出下列关系: (1)- 407[导学案]4.4单位圆的对称性与诱导公式与 407[导学案]4.4单位圆的对称性与诱导公式 的正弦函数、余弦函数关系 (2)角407[导学案]4.4单位圆的对称性与诱导公式与角 407[导学案]4.4单位圆的对称性与诱导公式 的正弦函数、余弦函数关系 (3)角 407[导学案]4.4单位圆的对称性与诱导公式与角 407[导学案]4.4单位圆的对称性与诱导公式 的正弦函数、余弦函数关系 (4)角 407[导学案]4.4单位圆的对称性与诱导公式与角 407[导学案]4.4单位圆的对称性与诱导公式 的`正弦函数、余弦函数关系 二、合作探究 探究1、求下列函数值,思考你用到了哪些三角函数诱导公式?试总结一下求任意角的三角函数值的过程与方法。 (1) 407[导学案]4.4单位圆的对称性与诱导公式 (2) 407[导学案]4.4单位圆的对称性与诱导公式 (3)sin(-1650°); 探究2: 化简: 407[导学案]4.4单位圆的对称性与诱导公式 407[导学案]4.4单位圆的对称性与诱导公式(先逐个化简) 探究3、利用单位圆求满足 407[导学案]4.4单位圆的对称性与诱导公式 的角的集合。 三、学习小结 (1)你能说说化任意角的正(余)弦函数为锐角正(余)弦函数的一般思路吗? (2)本节学习涉及到什么数学思想方法? (3)我的疑惑有 【达标检测】 1、在单位圆中,角α的终边与单位圆交于点P(- 407[导学案]4.4单位圆的对称性与诱导公式 , 407[导学案]4.4单位圆的对称性与诱导公式 ), 则sin(-α)= ;cs(α±π)= ;cs(π-α)= 2.求下列函数值: (1)sin( 407[导学案]4.4单位圆的对称性与诱导公式 )= ; (2) cs210&rd;= 3、若csα=-1/2,则α的集合S= 教学目标 1、应用正弦余弦定理解斜三角形应用题的一般步骤及基本思路 (1)分析,(2)建模,(3)求解,(4)检验; 2、实际问题中的有关术语、名称: (1)仰角与俯角:均是指视线与水平线所成的角; (2)方位角:是指从正北方向顺时针转到目标方向线的夹角; (3)方向角:常见的如:正东方向、东南方向、北偏东、南偏西等; 3、用正弦余弦定理解实际问题的常见题型有: 测量距离、测量高度、测量角度、计算面积、航海问题、物理问题等; 教学重难点 1、应用正弦余弦定理解斜三角形应用题的一般步骤及基本思路 (1)分析,(2)建模,(3)求解,(4)检验; 2、实际问题中的有关术语、名称: (1)仰角与俯角:均是指视线与水平线所成的角; (2)方位角:是指从正北方向顺时针转到目标方向线的夹角; (3)方向角:常见的如:正东方向、东南方向、北偏东、南偏西等; 3、用正弦余弦定理解实际问题的常见题型有: 测量距离、测量高度、测量角度、计算面积、航海问题、物理问题等; 教学过程 一、知识归纳 1、应用正弦余弦定理解斜三角形应用题的一般步骤及基本思路 (1)分析,(2)建模,(3)求解,(4)检验; 2、实际问题中的有关术语、名称: (1)仰角与俯角:均是指视线与水平线所成的'角; (2)方位角:是指从正北方向顺时针转到目标方向线的夹角; (3)方向角:常见的如:正东方向、东南方向、北偏东、南偏西等; 3、用正弦余弦定理解实际问题的常见题型有: 测量距离、测量高度、测量角度、计算面积、航海问题、物理问题等; 二、例题讨论 一)利用方向角构造三角形 四)测量角度问题 例4、在一个特定时段内,以点E为中心的7海里以内海域被设为警戒水域.点E正北55海里处有一个雷达观测站A.某时刻测得一艘匀速直线行驶的船只位于点A北偏东。 一、教学目标 1. 理解变量与常量的概念,能在具体问题中辨别变量与常量。 2. 理解函数的概念,能准确判断两个变量之间是否存在函数关系。 3. 掌握函数的三种表示方法:解析法、列表法、图象法。 4. 培养学生观察、分析、归纳的能力,体会数学在实际生活中的应用。 二、教学重难点 1. 重点:函数的概念,判断两个变量之间是否存在函数关系。 2. 难点:对函数概念的理解及函数关系的判断。 三、教学方法 讲授法、讨论法、实例分析法。 四、教学过程 1. 导入新课 (1)通过展示一些生活中的变化现象,如气温随时间的变化、汽车行驶路程随时间的变化等,引出变量的概念。 (2)提问学生在这些现象中哪些量是在变化的,哪些量是不变的,从而引入常量的概念。 2. 讲解变量与常量 (1)定义变量和常量:在一个变化过程中,数值发生变化的量称为变量,数值始终不变的.量称为常量。 (2)举例说明:如在圆的面积公式\(S=\pi r^{2}\)中,\(S\)和\(r\)是变量,\(\pi\)是常量。 3. 函数的概念 (1)通过具体实例,如汽车以\(60\)千米/小时的速度匀速行驶,路程\(s\)与时间\(t\)的关系为\(s = 60t\),引导学生分析两个变量之间的关系。 (2)给出函数的定义:一般地,在一个变化过程中,如果有两个变量\(x\)与\(y\),并且对于\(x\)的每一个确定的值,\(y\)都有唯一确定的值与其对应,那么我们就说\(x\)是自变量,\(y\)是\(x\)的函数。 (3)强调函数关系的两个关键:一是有两个变量;二是对于自变量的每一个确定的值,函数值有唯一确定的值与之对应。 4. 判断函数关系 (1)给出一些具体的问题,让学生判断两个变量之间是否存在函数关系。 例如:①正方形的面积\(S\)与边长\(a\)的关系;②购买商品的总价\(y\)与商品数量\(x\)的关系(已知商品单价为固定值)。 (2)引导学生分析问题,确定自变量和函数,判断是否满足函数关系的两个关键条件。 5. 函数的表示方法 (1)解析法:用数学式子表示两个变量之间的函数关系,如\(y = 2x + 1\)。 (2)列表法:通过列表的方式表示两个变量之间的函数关系,如给出一组\(x\)的值和对应的\(y\)的值。 (3)图象法:用图象表示两个变量之间的函数关系,如画出一次函数\(y = x + 2\)的图象。 6. 课堂练习 (1)给出一些具体的问题,让学生判断变量与常量,并确定函数关系。 (2)用不同的函数表示方法表示一些简单的函数关系。 7. 课堂小结 (1)总结变量与常量的概念。 (2)强调函数的概念及判断函数关系的方法。 (3)回顾函数的三种表示方法。 8. 布置作业 (1)课本上的课后习题。 (2)思考生活中还有哪些变量之间存在函数关系,并尝试用不同的方法表示出来。 学习是一个潜移默化、厚积薄发的过程。编辑老师编辑了高一数学教案:数列,希望对您有所帮助! 教学目标 1.使学生理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项. (1)理解数列是按一定顺序排成的一列数,其每一项是由其项数唯一确定的. (2)了解数列的各种表示方法,理解通项公式是数列第项与项数的关系式,能根据通项公式写出数列的前几项,并能根据给出的一个数列的前几项写出该数列的一个通项公式. (3)已知一个数列的递推公式及前若干项,便确定了数列,能用代入法写出数列的前几项. 2.通过对一列数的观察、归纳,写出符合条件的一个通项公式,培养学生的观察能力和抽象概括能力. 3.通过由求的过程,培养学生严谨的科学态度及良好的思维习惯. 教学建议 (1)为激发学生学习数列的兴趣,体会数列知识在实际生活中的作用,可由实际问题引入,从中抽象出数列要研究的问题,使学生对所要研究的内容心中有数,如书中所给的例子,还有物品堆放个数的计算等. (2)数列中蕴含的函数思想是研究数列的指导思想,应及早引导学生发现数列与函数的关系.在教学中强调数列的项是按一定顺序排列的,“次序”便是函数的自变量,相同的数组成的数列,次序不同则就是不同的数列.函数表示法有列表法、图象法、解析式法,类似地,数列就有列举法、图示法、通项公式法.由于数列的自变量为正整数,于是就有可能相邻的两项(或几项)有关系,从而数列就有其特殊的表示法——递推公式法. (3)由数列的通项公式写出数列的前几项是简单的代入法,教师应精心设计例题,使这一例题为写通项公式作一些准备,尤其是对程度差的'学生,应多举几个例子,让学生观察归纳通项公式与各项的结构关系,尽量为写通项公式提供帮助. (4)由数列的前几项写出数列的一个通项公式使学生学习中的一个难点,要帮助学生分析各项中的结构特征(整式,分式,递增,递减,摆动等),由学生归纳一些规律性的结论,如正负相间用来调整等.如果学生一时不能写出通项公式,可让学生依据前几项的规律,猜想该数列的下一项或下几项的值,以便寻求项与项数的关系. (5)对每个数列都有求和问题,所以在本节课应补充数列前项和的概念,用表示的问题是重点问题,可先提出一个具体问题让学生分析与的关系,再由特殊到一般,研究其一般规律,并给出严格的推理证明(强调的表达式是分段的);之后再到特殊问题的解决,举例时要兼顾结果可合并及不可合并的情况. (6)给出一些简单数列的通项公式,可以求其最大项或最小项,又是函数思想与方法的体现,对程度好的学生应提出这一问题,学生运用函数知识是可以解决的. 上述提供的高一数学教案:数列希望能够符合大家的实际需要! 教学目标: 1、理解集合的概念和性质。 2、了解元素与集合的表示方法。 3、熟记有关数集。 4、培养学生认识事物的能力。 教学重点: 集合概念、性质 教学难点: 集合概念的理解 教学过程: 1、定义: 集合:一般地,某些指定的对象集在一起就成为一个集合(集)。元素:集合中每个对象叫做这个集合的元素。 由此上述例中集合的元素是什么? 例(1)的元素为1、3、5、7, 例(2)的元素为到两定点距离等于两定点间距离的点, 例(3)的元素为满足不等式3x—2> x+3的实数x, 例(4)的元素为所有直角三角形, 例(5)为高一·六班全体男同学。 一般用大括号表示集合,{?}如{我校的篮球队员},{太平洋、大西洋、印度洋、北冰洋}。则上几例可表示为?? 为方便,常用大写的拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (1)确定性;(2)互异性;(3)无序性。 3、元素与集合的'关系:隶属关系 元素与集合的关系有“属于∈”及“不属于?(?也可表示为)两种。如A={2,4,8,16},则4∈A,8∈A,32?A。 集合的'元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集A记作a?A,相反,a不属于集A记作a?A(或) 注:1、集合通常用大写的拉丁字母表示,如A、B、C、P、Q?? 元素通常用小写的拉丁字母表示,如a、b、c、p、q?? 2、“∈”的开口方向,不能把a∈A颠倒过来写。 4 注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0。 (2)非负整数集内排除0的集。记作N__或N+ 。Q、Z、R等其它数集内排除0 的集,也是这样表示,例如,整数集内排除0的集,表示成Z__ 请回答:已知a+b+c=m,A={x|ax2+bx+c=m},判断1与A的关系。 高一数学学习方法归纳 【一、及时回忆】 如果等到把课堂内容遗忘得差不多时才复习,就几乎等于重新学习,所以课堂学习的新知识必须及时复习。 可以一个人单独回忆,也可以几个人在一起互相启发,补充回忆。一般按照教师板书的提纲和要领进行,也可以按教材纲目结构进行,从课题到重点内容,再到例题的每部分的细节,循序渐进地进行复习。在复习过程中要不失时机整理笔记,因为整理笔记也是一种有效的复习方法。 【二、重复巩固】 即使是复习过的内容仍须定期巩固,但是复习的次数应随时间的增长而逐步减小,间隔也可以逐渐拉长。可以当天巩固新知识,每周进行周小结,每月进行阶段性总结,期中、期末进行全面系统的学期复习。从内容上看,每课知识即时回顾,每单元进行知识梳理,每章节进行知识归纳总结,必须把相关知识串联在一起,形成知识网络,达到对知识和方法的整体把握。 【三、合理安排】 复习一般可以分为集中复习和分散复习。实验证明,分散复习的效果优于集中复习,特殊情况除外。分散复习,可以把需要识记的材料适当分类,并且与其他的学习或娱乐或休息交替进行,不至于单调使用某种思维方式,形成疲劳。分散复习也应结合各自认知水平,以及识记素材的特点,把握重复次数与间隔时间,并非间隔时间越长越好,而要适合自己的复习规律。 【四、突破重点难点】 对所学的素材要进行分析、归类,找出重、难点,分清主次。在复习过程中,特别要关注难点及容易造成误解的问题,应分析其关键点和易错点,找出原因,必要时还可以把这类问题进行梳理,记录在一个专题本上,也可以在电脑上做一个重难点“超市”,可随时点击,进行复习。 【五、效果检测】 随着时间的推移,复习的效果会产生变化,有的淡化、有的模糊、有的不准确,到底各环节的内容掌握得如何,需进行效果检测,如:周周练、月月测、单元过关练习、期中考试、期末考试等,都是为了检测学习效果。检测时必须独立,完成,保证检测出的效果的真实性,如果存在问题,应该找到错误的根源,并适时采取补救措施进行校正。目前市场上练习册多如牛毛,请在老师的指导下选用。 高中数学考试的技巧 总体原则 1、先做简单题,后做难题。 2、遇到较难的大题,把所有跟该题有关的知识点都写出来,要知道数学讲究步骤分。 3、若是证明题,万一不会,可以先写出已知条件,再写出要证明的最后一步,再一步一步往上推,中间步骤随便写点。(使用于粗心的教师,但我们不提倡,重点是要平时学好)。 一、整体把握、抓大放小 拿到试卷后可以先快速浏览一下所有题目,根据积累的考试经验,大致估计一下每部分应该分配的时间。对于能够很快做出来的题目,一定要拿到应得的分数。 二、确定每部分的答题时间 1、考试时占用了很多时间却一点也没有做出来的题目。对于这类题目,你以后考试时就应该尽量减少时间,或者放弃,等以后学习进阶了再尝试着做。 2、考试时花了过多的时间才做出来的题目。对于这类题目,你以后平时做题时要尽量加快速度,或者通过“反复训练”等提高反应速度,这样,你下次考试时能用较少的时间做出来。 三、碰到难题时 1、你可以先用“直觉”最快的找到解题思路; 2、如果“直觉”不管用,你可以联想以前做过的类似的题目,从而找到解题思路; 3、如果这样也不行,你可以猜测一下这道题目可能涉及到的知识点和解题技巧。 4、对于花了一定时间仍然不能做出来的题目,要勇于放弃。 四、卷面整洁、字迹清楚、注意小节 做到卷面整洁、字迹清楚,把标点、符号、解题步骤等小的地方尽量做好,不要丢掉应得的每一分。 一、教学目标 1. 让学生深刻理解变量、常量的概念,能够准确识别具体问题中的变量与常量。 2. 引导学生掌握函数的定义,学会判断两个变量之间是否构成函数关系。 3. 熟悉函数的三种主要表示方法,并能根据具体情况选择合适的表示方法。 4. 培养学生的逻辑思维能力和分析问题、解决问题的能力,增强学生对数学的应用意识。 二、教学重难点 1. 重点:函数的概念及其判断,函数的三种表示方法。 2. 难点:对函数概念的深入理解及复杂情境下函数关系的.判断。 三、教学方法 问题驱动法、小组讨论法、实例分析法。 四、教学过程 1. 创设情境,引入课题 (1)播放一段关于水位随时间变化的视频,引导学生观察其中的变量和常量。 (2)提问学生视频中哪些量在变化,哪些量保持不变,从而引出变量与常量的概念。 2. 变量与常量的讲解 (1)明确变量与常量的定义:在一个变化过程中,发生变化的量叫做变量,始终不变的量叫做常量。 (2)通过多个具体实例,如自由落体运动中下落高度与时间的关系、电阻两端电压与电流的关系等,让学生找出其中的变量和常量。 3. 函数概念的探究 (1)以气温随时间的变化为例,分析温度与时间两个变量之间的关系。 (2)逐步引导学生理解函数的概念:在一个变化过程中,有两个变量\(x\)和\(y\),对于\(x\)的每一个确定的值,\(y\)都有唯一确定的值与之对应,那么就说\(y\)是\(x\)的函数,\(x\)叫做自变量。 (3)强调函数关系的两个要点:一是有两个变量;二是自变量与函数值的对应关系是唯一确定的。 4. 判断函数关系 (1)给出若干组变量关系,如圆的周长\(C\)与半径\(r\)的关系、人的身高与年龄的关系等,让学生判断是否为函数关系。 (2)组织学生小组讨论,引导学生从函数概念的两个要点出发进行分析判断。 5. 函数的表示方法 (1)解析法:通过具体例子如\(y = 3x - 2\),讲解用数学式子表示函数关系的方法。 (2)列表法:展示一个用表格表示函数关系的例子,如某商品的价格与销售量的对应关系表。 (3)图象法:画出简单函数如\(y = x^{2}\)的图象,介绍用图象表示函数的方法。 6. 课堂练习与巩固 (1)给出一些实际问题,让学生判断其中的变量与常量,并确定是否存在函数关系。 (2)要求学生用不同的函数表示方法表示给定的函数关系。 7. 课堂小结 (1)总结变量与常量的概念及判断方法。 (2)回顾函数的概念和判断函数关系的要点。 (3)强调函数的三种表示方法及其适用情况。 8. 布置作业 (1)完成课后相关习题。 (2)观察生活中的一个现象,分析其中的变量关系,并尝试用不同的方法表示出来。 一、教材分析及处理 函数是高中数学的重要内容之一,函数的基础知识在数学和其他许多学科中有着广泛的应用;函数与代数式、方程、不等式等内容联系非常密切;函数是近一步学习数学的重要基础知识;函数的概念是运动变化和对立统一等观点在数学中的具体体现;函数概念及其反映出的数学思想方法已广泛渗透到数学的各个领域,《函数》教学设计。 对函数概念本质的理解,首先应通过与初中定义的比较、与其他知识的联系以及不断地应用等,初步理解用集合与对应语言刻画的函数概念.其次在后续的学习中通过基本初等函数,引导学生以具体函数为依托、反复地、螺旋式上升地理解函数的本质。 教学重点是函数的概念,难点是对函数概念的本质的理解。 学生现状 学生在第一章的时候已经学习了集合的概念,同时在初中时已学过一次函数、反比例函数和二次函数,那么如何用集合知识来理解函数概念,结合原有的知识背景,活动经验和理解走入今天的课堂,如何有效地激活学生的学习兴趣,让学生积极参与到学习活动中,达到理解知识、掌握方法、提高能力的目的,使学生获得有益有效的学习体验和情感体验,是在教学设计中应思考的。 二、教学三维目标分析 1、知识与技能(重点和难点) (1)、通过实例让学生能够进一步体会到函数是描述变量之间的依赖关系的重要数学模型。并且在此基础上学习应用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用。不但让学生能完成本节知识的学习,还能较好的复习前面内容,前后衔接。 (2)、了解构成函数的三要素,缺一不可,会求简单函数的定义域、值域、判断两个函数是否相等等。 (3)、掌握定义域的表示法,如区间形式等。 (4)、了解映射的概念。 2、过程与方法 函数的概念及其相关知识点较为抽象,难以理解,学习中应注意以下问题: (1)、首先通过多媒体给出实例,在让学生以小组的形式开展讨论,运用猜想、观察、分析、归纳、类比、概括等方法,探索发现知识,找出不同点与相同点,实现学生在教学中的主体地位,培养学生的创新意识。 (2)、面向全体学生,根据课本大纲要求授课。 (3)、加强学法指导,既要让学生学会本节知识点,也要让学生会自我主动学习。 3、情感态度与价值观 (1)、通过多媒体给出实例,学生小组讨论,给出自己的结论和观点,加上老师的辅助讲解,培养学生的实践能力和和大胆创新意识,教案《《函数》教学设计》。 (2)、让学生自己讨论给出结论,培养学生的自我动手能力和小组团结能力。 三、教学器材 多媒体ppt课件 四、教学过程 教学内容教师活动学生活动设计意图 《函数》课题的引入(用时一分钟)配着简单的音乐,从简单的例子引入函数应用的广泛,将同学们的视线引入函数的学习上听着悠扬的音乐,让同学们的视线全注意在老师所讲的内容上从贴近学生生活入手,符合学生的认知特点。让学生在领略大自然的美妙与和谐中进入函数的世界,体现了新课标的理念:从知识走向生活 知识回顾:初中所学习的函数知识(用时两分钟)回顾初中函数定义及其性质,简单回顾一次函数、二次函数、正比例函数、反比例函数的性质、定义及简单作图认真听老师回顾初中知识,发现异同在初中知识的基础上引导学生向更深的内容探索、求知。即复习了所学内容又做了即将所学内容的铺垫 思考与讨论:通过给出的问题,引出本节课的主要内容(用时四分钟)给出两个简单的问题让同学们思考,讲述初中内容无法给出正确答案,需要从新的.高度来认识函数结合老师所回顾的知识,结合自己所掌握的知识,思考老师给出的问题,小组形式作讨论,从简单问题入手,循序渐进,引出本节主要知识,回顾前一节的集合感念,应用到本节知识,前后联系、衔接 新知识的讲解:从概念开始讲解本节知识(用时三分钟)详细讲解函数的知识,包括定义域,值域等,回到开始提问部分作答做笔记,专心听讲讲解函数概念,由知识讲解回到问题身上,解决问题 对提问的回答(用时五分钟)引导学生自己解决开始所提的两个问题,然后同个互动给出最后答案通过与老师共同讨论回答开始问题,总结更好的掌握函数概念,通过问题来更好的掌握知识 函数区间(用时五分钟)引入函数定义域的表示方法简洁明了的方法表示函数的定义域或值域,在集合表示方法的基础上引入另一种方法 注意点(用时三分钟)做个简单的的回顾新内容,把难点重点提出来,让同学们记住通过问题回答,概念解答,把重难点给出,提醒学生注意内容和知识点 习题(用时十分钟)给出习题,分析题意在稿纸上简单作答,回答问题通过习题练习明确重难点,把不懂的地方记住,课后学生在做进一步的联系 映射(用时两分钟)从概念方面讲解映射的意义,象与原象在新知识的基础上了解更多知识,映射的学习给以后的知识内容做更好的铺垫 小结(用时五分钟)简单讲述本节的知识点,重难点做笔记前后知识的连贯,总结,使学生更明白知识点 五、教学评价 为了使学生了解函数概念产生的背景,丰富函数的感性认识,获得认识客观世界的体验,本课采用"突出主题,循序渐进,反复应用"的方式,在不同的场合考察问题的不同侧面,由浅入深。本课在教学时采用问题探究式的教学方法进行教学,逐层深入,这样使学生对函数概念的理解也逐层深入,从而准确理解函数的概念。函数引入中的三种对应,与初中时学习函数内容相联系,这样起到了承上启下的作用。这三种对应既是函数知识的生长点,又突出了函数的本质,为从数学内部研究函数打下了基础。 在培养学生的能力上,本课也进行了整体设计,通过探究、思考,培养了学生的实践能力、观察能力、判断能力;通过揭示对象之间的内在联系,培养了学生的辨证思维能力;通过实际问题的解决,培养了学生的分析问题、解决问题和表达交流能力;通过案例探究,培养了学生的创新意识与探究能力。 虽然函数概念比较抽象,难以理解,但是通过这样的教学设计,学生基本上能很好地理解了函数概念的本质,达到了课程标准的要求,体现了课改的教学理念。 学习是一个潜移默化、厚积薄发的过程。编辑老师编辑了高一数学教案:数列,希望对您有所帮助! 教学目标 1.使学生理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项. (1)理解数列是按一定顺序排成的一列数,其每一项是由其项数唯一确定的. (2)了解数列的各种表示方法,理解通项公式是数列第项与项数的关系式,能根据通项公式写出数列的前几项,并能根据给出的一个数列的前几项写出该数列的一个通项公式. (3)已知一个数列的递推公式及前若干项,便确定了数列,能用代入法写出数列的前几项. 2.通过对一列数的观察、归纳,写出符合条件的一个通项公式,培养学生的观察能力和抽象概括能力. 3.通过由求的过程,培养学生严谨的科学态度及良好的思维习惯. 教学建议 (1)为激发学生学习数列的兴趣,体会数列知识在实际生活中的作用,可由实际问题引入,从中抽象出数列要研究的问题,使学生对所要研究的内容心中有数,如书中所给的例子,还有物品堆放个数的计算等. (2)数列中蕴含的函数思想是研究数列的指导思想,应及早引导学生发现数列与函数的关系.在教学中强调数列的项是按一定顺序排列的,“次序”便是函数的自变量,相同的数组成的数列,次序不同则就是不同的数列.函数表示法有列表法、图象法、解析式法,类似地,数列就有列举法、图示法、通项公式法.由于数列的自变量为正整数,于是就有可能相邻的两项(或几项)有关系,从而数列就有其特殊的表示法——递推公式法. (3)由数列的通项公式写出数列的前几项是简单的代入法,教师应精心设计例题,使这一例题为写通项公式作一些准备,尤其是对程度差的学生,应多举几个例子,让学生观察归纳通项公式与各项的`结构关系,尽量为写通项公式提供帮助. (4)由数列的前几项写出数列的一个通项公式使学生学习中的一个难点,要帮助学生分析各项中的结构特征(整式,分式,递增,递减,摆动等),由学生归纳一些规律性的结论,如正负相间用来调整等.如果学生一时不能写出通项公式,可让学生依据前几项的规律,猜想该数列的下一项或下几项的值,以便寻求项与项数的关系. (5)对每个数列都有求和问题,所以在本节课应补充数列前项和的概念,用表示的问题是重点问题,可先提出一个具体问题让学生分析与的关系,再由特殊到一般,研究其一般规律,并给出严格的推理证明(强调的表达式是分段的);之后再到特殊问题的解决,举例时要兼顾结果可合并及不可合并的情况. (6)给出一些简单数列的通项公式,可以求其最大项或最小项,又是函数思想与方法的体现,对程度好的学生应提出这一问题,学生运用函数知识是可以解决的. 上述提供的高一数学教案:数列希望能够符合大家的实际需要! 一:【课前预习】 (一):【知识梳理】 1.直角三角形的边角关系(如图) (1)边的关系(勾股定理):AC2+BC2=AB2; (2)角的关系:B= (3)边角关系: ①: ②:锐角三角函数: A的正弦= ; A的余弦= , A的正切= 注:三角函数值是一个比值. 2.特殊角的三角函数值. 3.三角函数的关系 (1) 互为余角的三角函数关系. sin(90○-A)=cosA, cos(90○-A)=sin A tan(90○-A)= cotA (2) 同角的三角函数关系. 平方关系:sin2 A+cos2A=l 4.三角函数的大小比较 ①正弦、正切是增函数.三角函数值随角的增大而增大,随角的减小而减小. ②余弦是减函数.三角函数值随角的增大而减小,随角的减小而增大。 (二):【课前练习】 1.等腰直角三角形一个锐角的余弦为( ) A. D.l 2.点M(tan60,-cos60)关于x轴的对称点M的坐标是( ) 3.在 △ABC中,已知C=90,sinB=0.6,则cosA的值是( ) 4.已知A为锐角,且cosA0.5,那么( ) A.060 B.6090 C.030 D.3090 二:【经典考题剖析】 1.如图,在Rt△ABC中,C=90,A=45,点D在AC上,BDC=60,AD=l,求BD、DC的长. 2.先化简,再求其值, 其中x=tan45-cos30 3. 计算:①sin248○+ sin242○-tan44○tan45○tan 46○ ②cos 255○+ cos235○ 4.比较大小(在空格处填写或或=) 若=45○,则sin________cos 若45○,则sin cos 若45,则 sin cos. 5.⑴如图①、②锐角的正弦值和余弦值都随着锐角的确定而确定,变化而变化,试探索随着锐角度数的增大,它的正弦值和余弦值变化的`规律; ⑵根据你探索到的规律,试比较18○、34○、50○、61○、88○这些锐角的正弦值的大小和余弦值的大小. 三:【课后训练】 1. 2sin60-cos30tan45的结果为( ) A. D.0 2.在△ABC中,A为锐角,已知 cos(90-A)= ,sin(90-B)= ,则△ABC一定是( ) A.锐角三角形;B.直角三角形;C.钝角三角形;D.等腰三角形 3.如图,在平面直角坐标系中,已知A(3,0)点B(0,-4),则cosOAB等于__________ 4.cos2+sin242○ =1,则锐角=______. 5.在下列不等式中,错误的是( ) A.sin45○sin30○;B.cos60○tan30○;D.cot30○ 6.如图,在△ABC中,AC=3,BC=4,AB=5,则tanB的值是() 7.如图所示,在菱形ABCD中,AEBC于 E点,EC=1,B=30,求菱形ABCD的周长. 8.如图所示,在△ABC中,ACB=90,BC=6,AC=8 ,CDAB,求:①sinACD 的值;②tanBCD的值 9.如图 ,某风景区的湖心岛有一凉亭A,其正东方向有一棵大树B,小明想测量A/B之间的距离,他从湖边的C处测得A在北偏西45方向上,测得B在北偏东32方向上,且量得B、C之间的距离为100米,根据上述测量结果,请你帮小明计算A山之间的距离是多少?(结果精确至1米.参考数据:sin32○0.5299,cos32○0.8480) 10.某住宅小区修了一个塔形建筑物AB,如图所示,在与建筑物底部同一水平线的C处,测得点A的仰角为45,然后向塔方向前进8米到达D处,在D处测得点A的仰角为60,求建筑物的高度.(精确0.1米) 学习目标 1、掌握双曲线的范围、对称性、顶点、渐近线、离心率等几何性质 2、掌握标准方程中的几何意义 3、能利用上述知识进行相关的论证、计算、作双曲线的草图以及解决简单的实际问题 一、预习检查 1、焦点在x轴上,虚轴长为12,离心率为的双曲线的标准方程为、 2、顶点间的距离为6,渐近线方程为的双曲线的标准方程为、 3、双曲线的渐进线方程为、 4、设分别是双曲线的半焦距和离心率,则双曲线的一个顶点到它的一条渐近线的距离是、 二、问题探究 探究1、类比椭圆的几何性质写出双曲线的几何性质,画出草图并,说出它们的不同、 探究2、双曲线与其渐近线具有怎样的关系、 练习:已知双曲线经过,且与另一双曲线,有共同的渐近线,则此双曲线的标准方程是、 例1根据以下条件,分别求出双曲线的标准方程、 (1)过点,离心率、 (2)、是双曲线的左、右焦点,是双曲线上一点,且,,离心率为、 例2已知双曲线,直线过点,左焦点到直线的距离等于该双曲线的虚轴长的,求双曲线的离心率、 例3(理)求离心率为,且过点的双曲线标准方程、 三、思维训练 1、已知双曲线方程为,经过它的右焦点,作一条直线,使直线与双曲线恰好有一个交点,则设直线的斜率是、 2、椭圆的离心率为,则双曲线的离心率为、 3、双曲线的渐进线方程是,则双曲线的离心率等于=、 4、(理)设是双曲线上一点,双曲线的一条渐近线方程为、分别是双曲线的左、右焦点,若,则、 四、知识巩固 1、已知双曲线方程为,过一点(0,1),作一直线,使与双曲线无交点,则直线的斜率的集合是、 2、设双曲线的一条准线与两条渐近线交于两点,相应的焦点为,若以为直径的圆恰好过点,则离心率为、 3、已知双曲线的左,右焦点分别为,点在双曲线的右支上,且,则双曲线的离心率的值为、 4、设双曲线的半焦距为,直线过、两点,且原点到直线的距离为,求双曲线的离心率、 5、(理)双曲线的焦距为,直线过点和,且点(1,0)到直线的距离与点(-1,0)到直线的距离之和、求双曲线的离心率的取值范围、 教学目标 1、掌握平面向量的数量积及其几何意义; 2、掌握平面向量数量积的重要性质及运算律; 3、了解用平面向量的数量积可以处理垂直的问题; 4、掌握向量垂直的条件、 教学重难点 教学重点:平面向量的数量积定义 教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的'应用 教学过程 1、平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ, 则数量|a||b|cosq叫a与b的数量积,记作a×b,即有a×b=|a||b|cosq,(0≤θ≤π)、 并规定0向量与任何向量的数量积为0、 ×探究:1、向量数量积是一个向量还是一个数量?它的符号什么时候为正?什么时候为负? 2、两个向量的数量积与实数乘向量的积有什么区别? (1)两个向量的数量积是一个实数,不是向量,符号由cosq的符号所决定、 (2)两个向量的数量积称为内积,写成a×b;今后要学到两个向量的外积a×b,而a×b是两个向量的数量的积,书写时要严格区分、符号“·”在向量运算中不是乘号,既不能省略,也不能用“×”代替、 (3)在实数中,若a?0,且a×b=0,则b=0;但是在数量积中,若a?0,且a×b=0,不能推出b=0、因为其中cosq有可能为0、 目标: 1.让学生熟练掌握二次函数的图象,并会判断一元二次方程根的存在性及根的个数 ; 2.让学生了解函数的零点与方程根的联系 ; 3.让学生认识到函数的图象及基本性质(特别是单调性)在确定函数零点中的作用 ; 4。培养学生动手操作的能力 。 二、教学重点、难点 重点:零点的`概念及存在性的判定; 难点:零点的确定。 三、复习引入 例1:判断方程 x2-x-6=0 解的存在。 分析:考察函数f(x)= x2-x-6, 其 图像为抛物线容易看出,f(0)=-60, f(4)0,f(-4)0 由于函数f(x)的图像是连续曲线,因此, 点B (0,-6)与点C(4,6)之间的那部分曲线 必然穿过x轴,即在区间(0,4)内至少有点 X1 使f(X1)=0;同样,在区间(-4,0) 内也至 少有点X2,使得f( X2)=0,而方程至多有两 个解,所以在(-4,0),(0,4)内各有一解 定义:对于函数y=f(x),我们把使f(x)=0的实数 x叫函数y=f(x)的零点 抽象概括 y=f(x)的图像与x轴的交点的横坐标叫做该函数的零点,即f(x)=0的解。 若y=f(x)的图像在[a,b]上是连续曲线,且f(a)f(b)0,则在(a,b)内至少有一个零点,即f(x)=0在 (a,b)内至少有一个实数解。 f(x)=0有实根(等价与y=f(x))与x轴有交点(等价与)y=f(x)有零点 所以求方程f(x)=0的根实际上也是求函数y=f(x)的零点 注意:1、这里所说若f(a)f(b)0,则在区间(a,b)内方程f(x)=0至少有一个实数解指出了方程f(x)=0的实数解的存在性,并不能判断具体有多少个解; 2、若f(a)f(b)0,且y=f(x)在(a,b)内是单调的,那么,方程f(x)=0在(a,b)内有唯一实数解; 3、我们所研究的大部分函数,其图像都是连续的曲线; 4、但此结论反过来不成立,如:在[-2,4]中有根,但f(-2)0, f(4) 0,f(-2) f(4) 5、缺少条件在[a,b]上是连续曲线则不成立,如:f(x)=1/ x,有f(-1)xf(1)0但没有零点。 四、知识应用 例2:已知f(x)=3x-x2 ,问方程f(x)=0在区间[-1,0]内没有实数解?为什么? 解:f(x)=3x-x2的图像是连续曲线, 因为 f(-1)=3-1-(-1)2 =-2/30, f(0)=30-(0)2 =-10, 所以f(-1) f(0) 0,在区间[-1,0]内有零点,即f(x)=0在区间[-1,0]内有实数解 练习:求函数f(x)=lnx+2x-6 有没有零点? 例3 判定(x-2)(x-5)=1有两个相异的实数解,且有一个大于5,一个小于2。 解:考虑函数f(x)=(x-2)(x-5)-1,有 f(5)=(5-2)(5-5)-1=-1 f(2)=(2-2)(2-5)-1=-1 又因为f(x)的图像是开口向上的抛物线,所以抛物线与横轴在(5,+)内有一个交点,在( -,2)内也有一个交点,所以方程式(x-2)(x-5)=1有两个相异数解,且一个大于5,一个小于2。 练习:关于x的方程2x2-3x+2m=0有两个实根均在[-1,1]内,求m的取值范围。 五、课后作业 p133第2,3题 教学目标: (1)理解交集与并集的概念; (2)掌握有关集合的术语和符号,并会用它们正确表示一些简单的集合; (3)能用图示法表示集合之间的关系; (4)掌握两个较简单集合的交集、并集的求法; (5)通过对交集、并集概念的讲解,培养学生观察、比较、分析、概括、等能力,使学生认识由具体到抽象的思维过程; (6)通过对集合符号语言的学习,培养学生符号表达能力,培养严谨的学习作风,养成良好的学习习惯. 教学重点:交集和并集的概念 教学难点:交集和并集的概念、符号之间的区别与联系 教学过程设计 一、导入新课 【提问】 试叙述子集、补集的概念?它们各涉及几个集合? 补集涉及三个集合,补集是由一个集合及其一个子集而产生的第三个集合.由两个集合产生第三个集合不仅有补集,在实际中还有许多其他情形,我们今天就来学习另外两种. 回忆. 倾听.集中注意力.激发求知欲. 巩固旧知.为导入新课作准备. 渗透集合运算的意识. 二、新课 【引入】我们看下面图(用投影仪打出,软片做成左右两向遮启式,便于同学在“动态”中进行观察). 【设问】 1.第一次看到了什么? 2.第二次看到了什么 3.第三次又看到了什么? 4.阴影部分的周界线是一条封闭曲线,它的内部(阴影部分)当然表示一个新的集合,试问这个新集合中的元素与集A 、集B元素有何关系? 【介绍】这又是一种由两个集合产生第三个集合的情况,在今后学习中会经常出现,为方便起见,称集A与集B的公共部分为集A与集B的交集. 【设问】请大家从元素与集合的关系试叙述文集的概念. 【助学】“且”的含义是“同时”,“又”. “所有”的含义是A与B的公共元素一个不能少. 【介绍】集合A与集合B的交集记作.读做“ A交B ”? 【助学】符号“ ”形如帽子戴在头 上,产生“交”的感觉,所以开口向下.切记该符号不要与表示子集的符号“ ”、“ ”混淆. 【设问】集A与集B的交集除上面看到的用图示法表示交集外,还可以用我们学习过的哪种方法表示?如何表示? 【设问】与A有何关系?如何表示?与B有何关系?如何表示? 【随练】写出,的交集. 【设问】大家是如何写出的? 我们再看下面的图. 【设问】 1.第一次看到了什么? 2.第二次除看到集B和外,还看到了什么集合? 3.第三次看到了什么?如何用有关集合的符号表示? 4.第四次看到了什么?这与刚才看到的集合类似,请用有关集合的符号表示. 5.第五次同学看出上面看到的集A 、集B 、集、集、集,它们都可以用我们已经学习过的集合有关符号来表示.除此之外,大家还可以发现什么集合? 6.第六次看到了什么? 7.阴影部分的周界是一条封闭曲线,它的内部(阴影部分)表示一个新的集合,试问它的元素与集A集B的元素有何关系? 【注】若同学直接观察到,第二、三、四次和第五次部分观察活动可不进行. 【介绍】这又是由两个集合产生第三个集合的情形,在今后学习中也经常出现,它给我们由集A集B并在一起的感觉,称为集A集B的并. 【设问】请大家从元素与集合关系仿照交集概念的叙述方法试叙述并集的概念? 【助学】并集与交集的概念仅一字之差,即将“且”改为“或”.或的含义是集A中的所有元素要取,集B中的所有元素也要取. 【介绍】集A与集B的并集记作(读作A并B). 【助学】符号“ ”形如“碰杯”时的杯子,产生并的感觉,所以开口向上.切记,不要与“ ”混淆,更不能与“ ”等符号混淆. 观察.产生兴趣. 答:图示法表示的集A. 答:图示法表示集B.集A集B的公共部分? 答:公共部分出现阴影. 倾听.观察 思考.答:该集合中所有元素属于集合A且属于集合B. 倾听.理解. 思考.答:由所有属于集合A且属于集合B的元素所组成的集合,叫做A与B的交集. 倾听.记忆. 倾听.兴趣记忆. 思考:“列举法还是描述法?”答:描述法. 思考.议论. 口答结合板书. 想象交集的图示,或回忆交集的概念. 口答结合板书:是A的子集.A.是 B的子集. 口答结合板书. 口答:从一个集合开始,依次用其每个元素与另一个集合中的元素对照,取出相同的元素组成的集合即为所求. 答:图示法表示的集A. 答:集A中子集A交B的补集. 答:上述区域出现阴影. 口答结合板书 答:出现阴影. 口答结合板书 认真、仔细、整体的进行观察、想象.答:表示集A集B的两条封闭曲线除去表示交集的封闭曲线剩余部分组成一条封闭曲线的内部所表示的.集合. 答:出现阴影. 思考:答:该集合中所有元素属于集合A或属于集合B. 倾听,理解. 回忆交集概念,思考.答:由所有属于集合A或属于集合B的元素所组成的集合,叫做A与B的并集. 倾听.比较.记忆. 倾听,记忆. 倾听.兴趣记忆.比较记忆,. 直观性原则.多媒体助学. 用直观、感性的例子为引入交集做铺垫. 渗透集合运算意识. 直观的感知交集. 培养从直观、感性到理性的概括抽象能力. 解决难点. 兴趣激励.比较记忆 培养用描述法表示集合的能力. 培养想象能力. 以新代旧. 突出重点. 概念迁移为能力. 进一步培养观察能力. 培养观察能力 以新代旧. 培养整体观察能力. 培养从直观、感性到理性的概括抽象能力. 解决难点.比较记忆. 兴趣激励,辩易混.比较记忆. 【设问】集A与集B的并集除上面看到的用图示法表示外,还可以用我们学习过的哪种方法表示?如何表示? 【设问】与A有何关系?如何表示?与B有何关系?如何表示? 【随练】写出,的并集. 【设问】大家是如何写出的? 【例1 】设,,求(以下例题用投影仪打出,随用随启). 【助练】本例实为解不等式组,用数轴法找出公共部分,写出即可. 【例2 】设, ,求 【例3 】设,,求 【例4 】设, ,求 【助学】数轴法(略).想象前面集A集B并集的图示法,类似地,将两个不等式区域并到一起,即为所求.其中元素2虽不属于集A倮属于集B,所以要取,元素1虽不属于集B但属于集A,所以要取,因此,只要将集A的左端点,集B的右端点组成新的不等式区域即为所求(两端点取否维持题设条件). 【助练】以上例题,当理解并较熟练后,且结果可进一步简化时,中间一步或两步可省略.如例4. 【练习】教材第12页练习1~5. 【助练】 1.全集与其某个子集的交集是哪个集合? 2.全集与其某个子集的并集是哪个集合? 3.两个无公共元素的集合的交集是什么集合? 4.两个无公共元素的集合A 、 B,它们的并集如何表示? 5.任意集合A与其本身的交集、并集分别是什么集合?如何表示? 6.任意集A与空集的交集、并集分别是什么集合?如何表示? 7.与的关系如何表示?与的关系如何表示? 【例5 】设,,求 【助思】 1.集A 、集B各是什么集合? 2.如何理解 3.本例实为求两条直线的交点或解二元一次方程组,只不过是从集合的角度提出问题解决问题. 【例6 】已知A为奇数集,B为偶数集,Z为整数集,求,,,, , 【助学】 1.偶数包括哪些数?任意偶数如何表示?偶数集(全体偶数的集合)如何表示? 2.奇数包括哪些数?任意奇数如何表示?奇数集(全体奇数的集合?如何表示?) 【例7 】设,,,求,,,. 思考:“列举法还是描述法?” 答:描述法. 思考.议论. 口答结合板书. 或 想象并集的图示,或回忆并集的概念. 口答结合板书:A和B都是的子集., 口答结合板书: 口答:综合考虑两个集合,从最小数开始,哪个集合的元素都取,一个不能丢,相同元素由集合中元素的互异性只取一次. 审清题意.笔练结合板书. 解: 倾听.理解. 审清题意.口答结合板书. 解: 是直角三角形,且是直角三角形是等腰三角形. 审清题意.口答结合板书. 解:是锐角三角形是钝角三角形是锐角三角形,或是钝角三角形是斜三角形. 审清题意. 画数轴.画出不等式区域.倾听.解: 倾听.理解. 口答结合笔练和板演. 思考.答:子集. 思考.答:全集. 思考.答:空集 思考.议论.答:,或 思考.答:A., 思考.答:分别是空集和A. , 思考.答: 审清题意. 思考.议论.答:分别是直线或直线上的点集.或者分别是二元一次方程和二元一次方程的解集. 思考:答:求这两条直线的交点,或求这两个二元一次方程的公共解,即求由这两个二元一次方程组成的二元一次方程组的解. 倾听.理解.掌握. 解: 审题中发现未见过的集合. 思索. 答:0,,等.() 或{偶数} 答:,等.() 或(奇数) 解:{奇数} {偶数} {奇数} Z={奇数}=A. {偶数} Z={偶数}=B. {奇数} {偶数}=Z. {奇数} {偶数} 审清题意.口答结合板书. 解: 培养用描述法表示集合的能力. 以新代旧. 培养想象能力. 以新代旧. 突出重点. 概念迁移为能力. 突出重点.培养能力. 落实教学目标. 突出重点.培养能力. 三、课堂练习 教材第13页练习1 、 2 、 3 、 4. 【助练习】第13页练习4(1)中用一个方向的斜平行线段表示,用另一方向的平行线段表示如图: 凡有阴影部分即为所求. 【讲解】看图,所得结果实际上还可以看作全集U中子集的补集则有第13页练习4(2)仿上,如图,凡有双向阴影部分即为所求. 【讲解】看图,所得结果实际上还可以看作全集U中子集的补集.则有:以上两个等式称反演律.简记为“先补后并等于先交后补”和“先补后交等于先并后补”.反演律在今后类似问题中给我们带来方便,因为它将三步工作简化为两步工作. 四、小结 提纲式(略).再一次突出交集和并集两个概念中“且”,“或”的含义的不同. 五、作业 习题1至8. 笔练结合板书. 倾听.修改练习.掌握方法. 观察.思考.倾听.理解.记忆. 倾听.理解.记忆. 回忆、再现学习内容. 落实教学目标 介绍解题技能技巧. 学习内容条理化. 课堂教学设计说明 1.本教学设计方案除继续遵循“集合”方案中的“主体教学思想”外,着力研究直观性原则在教学中的应用及多媒体(投影仪)的助学作用. 2.反演律可根据学生实际酌情使用. 一、教学目标 (1)了解含有“或”、“且”、“非”复合命题的概念及其构成形式; (2)理解逻辑联结词“或”“且”“非”的含义; (3)能用逻辑联结词和简单命题构成不同形式的复合命题; (4)能识别复合命题中所用的逻辑联结词及其联结的简单命题; (5)会用真值表判断相应的复合命题的真假; (6)在知识学习的基础上,培养学生简单推理的技能. 二、教学重点难点: 重点是判断复合命题真假的方法;难点是对“或”的含义的理解. 三、教学过程 1.新课导入 在当今社会中,人们从事任何工作、学习,都离不开逻辑.具有一定逻辑知识是构成一个公民的文化素质的重要方面.数学的特点是逻辑性强,特别是进入高中以后,所学的教学比初中更强调逻辑性.如果不学习一定的逻辑知识,将会在我们学习的过程中不知不觉地经常犯逻辑性的错误.其实,同学们在初中已经开始接触一些简易逻辑的知识. 初一平面几何中曾学过命题,请同学们举一个命题的例子.(板书:命题.) (从初中接触过的“命题”入手,提出问题,进而学习逻辑的有关知识.) 学生举例:平行四边形的对角线互相平. ……(1) 两直线平行,同位角相等.…………(2) 教师提问:“……相等的角是对顶角”是不是命题?……(3) (同学议论结果,答案是肯定的.) 教师提问:什么是命题? (学生进行回忆、思考.) 概念总结:对一件事情作出了判断的语句叫做命题. (教师肯定了同学的回答,并作板书.) 由于判断有正确与错误之分,所以命题有真假之分,命题(1)、(2)是真命题,而(3)是假命题. (教师利用投影片,和学生讨论以下问题.) 例1 判断以下各语句是不是命题,若是,判断其真假: 命题一定要对一件事情作出判断,(3)、(4)没有对一件事情作出判断,所以它们不是命题. 初中所学的命题概念涉及逻辑知识,我们今天开始要在初中学习的基础上,介绍简易逻辑的知识. 2.讲授新课 大家看课本(人教版,试验修订本,第一册(上))从第25页至26页例1前,并归纳一下这段内容主要讲了哪些问题? (片刻后请同学举手回答,一共讲了四个问题.师生一道归纳如下.) (1)什么叫做命题? 可以判断真假的语句叫做命题. 判断一个语句是不是命题,关键看这语句有没有对一件事情作出了判断,疑问句、祈使句都不是命题.有些语句中含有变量,如 x2-5x+6=0 中含有变量 ,在不给定变量的值之前,我们无法确定这语句的真假(这种含有变量的语句叫做“开语句”). (2)介绍逻辑联结词“或”、“且”、“非”. “或”、“且”、“非”这些词叫做逻辑联结词.逻辑联结词除这三种形式外,还有“若…则…”和“当且仅当”两种形式. 命题可分为简单命题和复合命题. 不含逻辑联结词的命题叫做简单命题.简单命题是不含其他命题作为其组成部分(在结构上不能再分解成其他命题)的命题. 由简单命题和逻辑联结词构成的命题叫做复合命题,如“6是自然数且是偶数”就是由简单命题“6是自然数”和“6是偶数”由逻辑联结词“且”构成的复合命题. (4)命题的表示:用p ,q ,r ,s ,……来表示. (教师根据学生回答的情况作补充和强调,特别是对复合命题的概念作出分析和展开.) 我们接触的'复合命题一般有“p 或q ”“p且q ”、“非p ”、“若p 则q ”等形式. 给出一个含有“或”、“且”、“非”的复合命题,应能说出构成它的简单命题和弄清它所用的逻辑联结词;应能根据所给出的两个简单命题,写出含有逻辑联结词“或”、“且”、“非”的复合命题. 对于给出“若p 则q ”形式的复合命题,应能找到条件p 和结论q . 在判断一个命题是简单命题还是复合命题时,不能只从字面上来看有没有“或”、“且”、“非”.例如命题“等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合”,此命题字面上无“且”;命题“5的倍数的末位数字不是0就是5”的字面上无“或”,但它们都是复合命题. 3.巩固新课 例2 判断下列命题,哪些是简单命题,哪些是复合命题.如果是复合命题,指出它的构成形式以及构成它的简单命题. (1)5 ; (2)0.5非整数; (3)内错角相等,两直线平行; (4)菱形的对角线互相垂直且平分; (5)平行线不相交; (6)若ab=0 ,则a=0 . (让学生有充分的时间进行辨析.教材中对“若…则…”不作要求,教师可以根据学生的情况作些补充.) 本文题目:高一数学教案:函数的奇偶性 课题:1.3.2函数的奇偶性 一、三维目标: 知识与技能:使学生理解奇函数、偶函数的概念,学会运用定义判断函数的奇偶性。 过程与方法:通过设置问题情境培养学生判断、推断的能力。 情感态度与价值观:通过绘制和展示优美的函数图象来陶冶学生的情操. 通过组织学生分组讨论,培养学生主动交流的合作精神,使学生学会认识事物的特殊性和一般性之间的关系,培养学生善于探索的思维品质。 二、学习重、难点: 重点:函数的奇偶性的概念。 难点:函数奇偶性的判断。 三、学法指导: 学生在独立思考的基础上进行合作交流,在思考、探索和交流的过程中获得对函数奇偶性的全面的体验和理解。对于奇偶性的应用采取讲练结合的方式进行处理,使学生边学边练,及时巩固。 四、知识链接: 1.复习在初中学习的轴对称图形和中心对称图形的定义: 2.分别画出函数f (x) =x3与g (x) = x2的图象,并说出图象的对称性。 五、学习过程: 函数的奇偶性: (1)对于函数 ,其定义域关于原点对称: 如果______________________________________,那么函数 为奇函数; 如果______________________________________,那么函数 为偶函数。 (2)奇函数的图象关于__________对称,偶函数的图象关于_________对称。 (3)奇函数在对称区间的增减性 ;偶函数在对称区间的增减性 。 六、达标训练: A1、判断下列函数的奇偶性。 (1)f(x)=x4;(2)f(x)=x5; (3)f(x)=x+ (4)f(x)= A2、二次函数 ( )是偶函数,则b=___________ . B3、已知 ,其中 为常数,若 ,则 _______ . B4、若函数 是定义在R上的奇函数,则函数 的图象关于 ( ) (A) 轴对称 (B) 轴对称 (C)原点对称 (D)以上均不对 B5、如果定义在区间 上的`函数 为奇函数,则 =_____ . C6、若函数 是定义在R上的奇函数,且当 时, ,那么当 时, =_______ . D7、设 是 上的奇函数, ,当 时, ,则 等于 ( ) (A)0.5 (B) (C)1.5 (D) D8、定义在 上的奇函数 ,则常数 ____ , _____ . 七、学习小结: 本节主要学习了函数的奇偶性,判断函数的奇偶性通常有两种方法,即定义法和图象法,用定义法判断函数的奇偶性时,必须注意首先判断函数的定义域是否关于原点对称。单调性与奇偶性的综合应用是本节的一个难点,需要学生结合函数的图象充分理解好单调性和奇偶性这两个性质。 八、课后反思: 第二十四教时 教材:倍角公式,推导和差化积及积化和差公式 目的:继续复习巩固倍角公式,加强对公式灵活运用的训练;同时,让学生推导出和差化积和积化和差公式,并对此有所了解。 过程: 一、 复习倍角公式、半角公式和万能公式的推导过程: 例一、 已知 , ,tan = ,tan = ,求2 + (《教学与测试》P115 例三) 解: 又∵tan2 0,tan 0 , 2 + = 例二、 已知sin cos = , ,求 和tan的值 解:∵sin cos = 化简得: ∵ 即 二、 积化和差公式的推导 sin( + ) + sin( ) = 2sincos sincos = [sin( + ) + sin( )] sin( + ) sin( ) = 2cossin cossin = [sin( + ) sin( )] cos( + ) + cos( ) = 2coscos coscos = [cos( + ) + cos( )] cos( + ) cos( ) = 2sinsin sinsin = [cos( + ) cos( )] 这套公式称为三角函数积化和差公式,熟悉结构,不要求记忆,它的优点在于将积式化为和差,有利于简化计算。(在告知公式前提下) 例三、 求证:sin3sin3 + cos3cos3 = cos32 证:左边 = (sin3sin)sin2 + (cos3cos)cos2 = (cos4 cos2)sin2 + (cos4 + cos2)cos2 = cos4sin2 + cos2sin2 + cos4cos2 + cos2cos2 = cos4cos2 + cos2 = cos2(cos4 + 1) = cos22cos22 = cos32 = 右边 原式得证 三、 和差化积公式的`推导 若令 + = , = ,则 , 代入得: 这套公式称为和差化积公式,其特点是同名的正(余)弦才能使用,它与积化和差公式相辅相成,配合使用。 例四、 已知cos cos = ,sin sin = ,求sin( + )的值 解:∵cos cos = , ① sin sin = , ② 四、 小结:和差化积,积化和差 五、 作业:《课课练》P3637 例题推荐 13 P3839 例题推荐 13 P40 例题推荐 13 一、教学目标 1.知识与技能 (1)解二分法求解方程的近似解的思想方法,会用二分法求解具体方程的近似解; (2)体会程序化解决问题的思想,为算法的学习作准备。 2.过程与方法 (1)让学生在求解方程近似解的实例中感知二分发思想; (2)让学生归纳整理本节所学的知识。 3.情感、态度与价值观 ①体会二分法的程序化解决问题的思想,认识二分法的价值所在,使学生更加热爱数学; ②培养学生认真、耐心、严谨的数学品质。 二、 教学重点、难点 重点:用二分法求解函数f(x)的零点近似值的步骤。 难点:为何由︱a - b ︳< 便可判断零点的近似值为a(或b)? 三、 学法与教学用具 1.想-想。 2.教学用具:计算器。 四、教学设想 (一)、创设情景,揭示课题 提出问题: (1)一元二次方程可以用公式求根,但是没有公式可以用来求解放程 ㏑x+2x-6=0的根;联系函数的零点与相应方程根的关系,能否利用函数的有关知识来求她的根呢? (2)通过前面一节课的学习,函数f(x)=㏑x+2x-6在区间内有零点;进一步的问题是,如何找到这个零点呢? (二)、研讨新知 一个直观的想法是:如果能够将零点所在的范围尽量的缩小,那么在一定的精确度的要求下,我们可以得到零点的近似值;为了方便,我们通过“取中点”的方法逐步缩小零点所在的范围。 取区间(2,3)的中点2.5,用计算器算得f(2.5)≈-0.084,因为f(2.5)xf(3)<0,所以零点在区间(2.5,3)内; 再取区间(2.5,3)的中点2.75,用计算器算得f(2.75)≈0.512,因为f(2.75)xf(2.5)<0,所以零点在(2.5,2.75)内; 由于(2,3),(2.5,3),(2.5,2.75)越来越小,所以零点所在范围确实越来越小了;重复上述步骤,那么零点所在范围会越来越小,这样在有限次重复相同的步骤后,在一定的精确度下,将所得到的零点所在区间上任意的一点作为零点的近似值,特别地可以将区间的端点作为零点的`近似值。例如,当精确度为0.01时,由于∣2.5390625-2.53125∣=0.0078125<0.01,所以我们可以将x=2.54作为函数f(x)=㏑x+2x-6零点的近似值,也就是方程㏑x+2x-6=0近似值。 这种求零点近似值的方法叫做二分法。 1.师:引导学生仔细体会上边的这段文字,结合课本上的相关部分,感悟其中的思想方法. 生:认真理解二分法的函数思想,并根据课本上二分法的一般步骤,探索其求法。 2.为什么由︱a - b ︳<便可判断零点的近似值为a(或b)? 先由学生思考几分钟,然后作如下说明: 设函数零点为x0,则a<x0<b,则: 0<x0-a<b-a,a-b<x0-b<0; 由于︱a - b ︳<,所以 ︱x0 - a ︳<b-a<,︱x0 - b ︳<∣ a-b∣<, 即a或b 作为零点x0的近似值都达到了给定的精确度。 (三)、巩固深化,发展思维 1.学生在老师引导启发下完成下面的例题 例2.借助计算器用二分法求方程2x+3x=7的近似解(精确到0.01) 问题:原方程的近似解和哪个函数的零点是等价的? 师:引导学生在方程右边的常数移到左边,把左边的式子令为f(x),则原方程的解就是f(x)的零点。 生:借助计算机或计算器画出函数的图象,结合图象确定零点所在的区间,然后利用二分法求解. (四)、归纳整理,整体认识 在师生的互动中,让学生了解或体会下列问题: (1)本节我们学过哪些知识内容? (2)你认为学习“二分法”有什么意义? (3)在本节课的学习过程中,还有哪些不明白的地方? (五)、布置作业 P92习题3.1A组第四题,第五题。 教学目标: 使学生理解函数的概念,明确决定函数的三个要素,学会求某些函数的定义域,掌握判定两个函数是否相同的方法;使学生理解静与动的辩证关系. 教学重点: 函数的概念,函数定义域的求法. 教学难点: 函数概念的理解. 教学过程: Ⅰ.课题导入 [师]在初中,我们已经学习了函数的概念,请同学们回忆一下,它是怎样表述的? (几位学生试着表述,之后,教师将学生的回答梳理,再表述或者启示学生将表述补充完整再条理表述). 设在一个变化的过程中有两个变量x和y,如果对于x的每一个值,y都有惟一的值与它对应,那么就说y是x的函数,x叫做自变量. [师]我们学习了函数的概念,并且具体研究了正比例函数,反比例函数,一次函数,二次函数,请同学们思考下面两个问题: 问题一:y=1(xR)是函数吗? 问题二:y=x与y=x2x 是同一个函数吗? (学生思考,很难回答) [师]显然,仅用上述函数概念很难回答这些问题,因此,需要从新的高度来认识函数概念(板书课题). Ⅱ.讲授新课 [师]下面我们先看两个非空集合A、B的元素之间的一些对应关系的例子. 在(1)中,对应关系是乘2,即对于集合A中的每一个数n,集合B中都有一个数2n和它对应. 在(2)中,对应关系是求平方,即对于集合A中的每一个数m,集合B中都有一个平方数m2和它对应. 在(3)中,对应关系是求倒数,即对于集合A中的每一个数x,集合B中都有一个数 1x 和它对应. 请同学们观察3个对应,它们分别是怎样形式的对应呢? [生]一对一、二对一、一对一. [师]这3个对应的共同特点是什么呢? [生甲]对于集合A中的任意一个数,按照某种对应关系,集合B中都有惟一的数和它对应. [师]生甲回答的很好,不但找到了3个对应的共同特点,还特别强调了对应关系,事实上,一个集合中的数与另一集合中的数的对应是按照一定的关系对应的,这是不能忽略的. 实际上,函数就是从自变量x的集合到函数值y的集合的一种对应关系. 现在我们把函数的概念进一步叙述如下:(板书) 设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有惟一确定的数f(x)和它对应,那么就称f︰AB为从集合A到集合B的一个函数. 记作:y=f(x),xA 其中x叫自变量,x的取值范围A叫做函数的定义域,与x的值相对应的y(或f(x))值叫做函数值,函数值的集合{y|y=f(x),xA}叫函数的值域. 一次函数f(x)=ax+b(a0)的定义域是R,值域也是R.对于R中的任意一个数x,在R中都有一个数f(x)=ax+b(a0)和它对应. 反比例函数f(x)=kx (k0)的定义域是A={x|x0},值域是B={f(x)|f(x)0},对于A中的任意一个实数x,在B中都有一个实数f(x)= kx (k0)和它对应. 二次函数f(x)=ax2+bx+c(a0)的定义域是R,值域是当a0时B={f(x)|f(x)4ac-b24a };当a0时,B={f(x)|f(x)4ac-b24a },它使得R中的任意一个数x与B中的数f(x)=ax2+bx+c(a0)对应. 函数概念用集合、对应的语言叙述后,我们就很容易回答前面所提出的两个问题. y=1(xR)是函数,因为对于实数集R中的任何一个数x,按照对应关系函数值是1,在R中y都有惟一确定的值1与它对应,所以说y是x的函数. Y=x与y=x2x 不是同一个函数,因为尽管它们的对应关系一样,但y=x的定义域是R,而y=x2x 的定义域是{x|x0}. 所以y=x与y=x2x 不是同一个函数. [师]理解函数的定义,我们应该注意些什么呢? (教师提出问题,启发、引导学生思考、讨论,并和学生一起归纳、总结) 注意:①函数是非空数集到非空数集上的一种对应. ②符号f:AB表示A到B的一个函数,它有三个要素;定义域、值域、对应关系,三者缺一不可. ③集合A中数的任意性,集合B中数的惟一性. ④f表示对应关系,在不同的函数中,f的具体含义不一样. ⑤f(x)是一个符号,绝对不能理解为f与x的乘积. [师]在研究函数时,除用符号f(x)表示函数外,还常用g(x) 、F(x)、G(x)等符号来表示 Ⅲ.例题分析 [例1]求下列函数的定义域. (1)f(x)=1x-2 (2)f(x)=3x+2 (3)f(x)=x+1 +12-x 分析:函数的定义域通常由问题的实际背景确定.如果只给出解析式y=f(x),而没有指明它的定义域.那么函数的定义域就是指能使这个式子有意义的实数x的集合. 解:(1)x-20,即x2时,1x-2 有意义 这个函数的定义域是{x|x2} (2)3x+20,即x-23 时3x+2 有意义 函数y=3x+2 的定义域是[-23 ,+) (3) x+10 x2 这个函数的定义域是{x|x{x|x2}=[-1,2)(2,+). 注意:函数的定义域可用三种方法表示:不等式、集合、区间. 从上例可以看出,当确定用解析式y=f(x)表示的函数的定义域时,常有以下几种情况: (1)如果f(x)是整式,那么函数的定义域是实数集R; (2)如果f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合; (3)如果f(x)是偶次根式,那么函数的定义域是使根号内的式子不小于零的实数的集合; (4)如果f(x)是由几个部分的数学式子构成的,那么函数的定义域是使各部分式子都有意义的实数的集合(即使每个部分有意义的实数的集合的交集); (5)如果f(x)是由实际问题列出的,那么函数的定义域是使解析式本身有意义且符合实际意义的实数的集合. 例如:一矩形的宽为x m,长是宽的2倍,其面积为y=2x2,此函数定义域为x0而不是全体实数. 由以上分析可知:函数的定义域由数学式子本身的意义和问题的实际意义决定. [师]自变量x在定义域中任取一个确定的值a时,对应的函数值用符号f(a)来表示.例如,函数f(x)=x2+3x+1,当x=2时的函数值是f(2)=22+32+1=11 注意:f(a)是常量,f(x)是变量 ,f(a)是函数f(x)中当自变量x=a时的函数值. 下面我们来看求函数式的值应该怎样进行呢? [生甲]求函数式的值,严格地说是求函数式中自变量x为某一确定的值时函数式的值,因此,求函数式的值,只要把函数式中的x换为相应确定的数(或字母,或式子)进行计算即可. [师]回答正确,不过要准确地求出函数式的值,计算时万万不可粗心大意噢! [生乙]判定两个函数是否相同,就看其定义域或对应关系是否完全一致,完全一致时,这两个函数就相同;不完全一致时,这两个函数就不同. [师]生乙的回答完整吗? [生]完整!(课本上就是如生乙所述那样写的). [师]大家说,判定两个函数是否相同的依据是什么? [生]函数的定义. [师]函数的定义有三个要素:定义域、值域、对应关系,我们判定两个函数是否相同为什么只看两个要素:定义域和对应关系,而不看值域呢? (学生窃窃私语:是啊,函数的三个要素不是缺一不可吗?怎不看值域呢?) (无人回答) [师]同学们预习时还是欠仔细,欠思考!我们做事情,看问题都要多问几个为什么!函数的值域是由什么决定的,不就是由函数的定义域与对应关系决定的吗!关注了函数的定义域与对应关系,三者就全看了! (生恍然大悟,我们怎么就没想到呢?) [例2]求下列函数的值域 (1)y=1-2x (xR) (2)y=|x|-1 x{-2,-1,0,1,2} (3)y=x2+4x+3 (-31) 分析:求函数的值域应确定相应的定义域后再根据函数的具体形式及运算确定其值域. 对于(1)(2)可用直接法根据它们的定义域及对应法则得到(1)(2)的值域. 对于(3)可借助数形结合思想利用它们的图象得到值域,即图象法. 解:(1)yR (2)y{1,0,-1} (3)画出y=x2+4x+3(-31)的图象,如图所示, 当x[-3,1]时,得y[-1,8] Ⅳ.课堂练习 课本P24练习17. Ⅴ.课时小结 本节课我们学习了函数的定义(包括定义域、值域的概念)、区间的概念及求函数定义域的方法.学习函数定义应注意的问题及求定义域时的各种情形应该予以重视.(本小结的内容可由学生自己来归纳) Ⅵ.课后作业 课本P28,习题1、2. 文 章来 教学目标: (1)了解集合的表示方法; (2)能正确选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用; 教学重点:掌握集合的表示方法; 教学难点:选择恰当的表示方法; 教学过程: 一、复习回顾: 1.集合和元素的定义;元素的三个特性;元素与集合的关系;常用的数集及表示。 2.集合{1,2}、{(1,2)}、{(2,1)}、{2,1}的元素分别是什么?有何关系 二、新课教学 (一).集合的表示方法 我们可以用自然语言和图形语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。 (1) 列举法:把集合中的元素一一列举出来,并用花括号“ ”括起来表示集合的方法叫列举法。 如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…; 说明:1.集合中的元素具有无序性,所以用列举法表示集合时不必考 虑元素的顺序。 2.各个元素之间要用逗号隔开; 3.元素不能重复; 4.集合中的元素可以数,点,代数式等; 5.对于含有较多元素的集合,用列举法表示时,必须把元素间的规律显示清楚后方能用省略号,象自然数集N用列举法表示为 例1.(课本例1)用列举法表示下列集合: (1)小于10的所有自然数组成的集合; (2)方程x2=x的所有实数根组成的集合; (3)由1到20以内的所有质数组成的集合; (4)方程组 的解组成的集合。 思考2:(课本P4的思考题)得出描述法的定义: (2)描述法:把集合中的元素的公共属性描述出来,写在花括号{ }内。 具体方法:在花括号内先写上表示这个集合元素的.一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。 一般格式: 如:{x|x-3>2},{(x,y)|y=x2+1},{x|直角三角形},…; 说明: 1.课本P5最后一段话; 2.描述法表示集合应注意集合的代表元素,如{(x,y)|y= x2+3x+2}与 {y|y= x2+3x+2}是不同的两个集合,只要不引起误解,集合的代表元素也可省略,例如:{x|整数},即代表整数集Z。 辨析:这里的{ }已包含“所有”的意思,所以不必写{全体整数}。下列写法{实数集},{R}也是错误的。 例2.(课本例2)试分别用列举法和描述法表示下列集合: (1)方程x2—2=0的所有实数根组成的集合; (2)由大于10小于20的所有整数组成的集合; (3)方程组 的解。 思考3:(课本P6思考) 说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。 (二).课堂练习: 1.课本P6练习2; 2.用适当的方法表示集合:大于0的所有奇数 3.集合A={x| ∈Z,x∈N},则它的元素是 。 4.已知集合A={x|-3 归纳小结: 本节课从实例入手,介绍了集合的常用表示方法,包括列举法、描述法。 作业布置: 1. 习题1.1,第3.4题; 2. 课后预习集合间的基本关系. 1.1 集合含义及其表示 教学目标:理解集合的概念;掌握集合的三种表示方法,理解集合中元素的三性及元素与集合的关系;掌握有关符号及术语。 教学过程: 一、阅读下列语句: 1) 全体自然数0,1,2,3,4,5, 2) 代数式 . 3) 抛物线 上所有的点 4) 今年本校高一(1)(或(2))班的全体学生 5) 本校实验室的所有天平 6) 本班级全体高个子同学 7) 著名的科学家 上述每组语句所描述的对象是否是确定的? 二、1)集合: 2)集合的元素: 3)集合按元素的个数分,可分为1)__________2)_________ 三、集合中元素的三个性质: 1)___________2)___________3)_____________ 四、元素与集合的关系:1)____________2)____________ 五、特殊数集专用记号: 1)非负整数集(或自然数集)______2)正整数集_____3)整数集_______ 4)有理数集______5)实数集_____ 6)空集____ 六、集合的表示方法: 1) 2) 3) 七、例题讲解: 例1、 中三个元素可构成某一个三角形的三边长,那么此三角形一定不是 ( ) A,直角三角形 B,锐角三角形 C,钝角三角形 D,等腰三角形 例2、用适当的方法表示下列集合,然后说出它们是有限集还是无限集? 1)地球上的四大洋构成的集合; 2)函数 的全体 值的集合; 3)函数 的全体自变量 的集合; 4)方程组 解的'集合; 5)方程 解的集合; 6)不等式 的解的集合; 7)所有大于0且小于10的奇数组成的集合; 8)所有正偶数组成的集合; 例3、用符号 或 填空: 1) ______Q ,0_____N, _____Z,0_____ 2) ______ , _____ 3)3_____ , 4)设 , , 则 例4、用列举法表示下列集合; 1. 2. 3. 4. 例5、用描述法表示下列集合 1.所有被3整除的数 2.图中阴影部分点(含边界)的坐标的集合 课堂练习: 例6、设含有三个实数的集合既可以表示为 ,也可以表示为 ,则 的值等于___________ 例7、已知: ,若 中元素至多只有一个,求 的取值范围。 思考题:数集A满足:若 ,则 ,证明1):若2 ,则集合中还有另外两个元素;2)若 则集合A不可能是单元素集合。 小结: 作业 班级 姓名 学号 1. 下列集合中,表示同一个集合的是 ( ) A . M= ,N= B. M= ,N= C. M= ,N= D. M= ,N= 2. M= ,X= ,Y= , , .则 ( ) A . B. C. D. 3. 方程组 的解集是____________________. 4. 在(1)难解的题目,(2)方程 在实数集内的解,(3)直角坐标平面内第四象限的一些点,(4)很多多项式。能够组成集合的序号是________________. 5. 设集合 A= , B= , C= , D= ,E= 。 其中有限集的个数是____________. 6. 设 ,则集合 中所有元素的和为 7. 设x,y,z都是非零实数,则用列举法将 所有可能的值组成的集合表示为 8. 已知f(x)=x2-ax+b,(a,b R),A= ,B= , 若A= ,试用列举法表示集合B= 9. 把下列集合用另一种方法表示出来: (1) (2) (3) (4) 10. 设a,b为整数,把形如a+b 的一切数构成的集合记为M,设 ,试判断x+y,x-y,xy是否属于M,说明理由。 11. 已知集合A= (1) 若A中只有一个元素,求a的值,并求出这个元素; (2) 若A中至多只有一个元素,求a的取值集合。 12.若-3 ,求实数a的值。 【总结】20xx年已经到来,新的一年数学网会为您整理更多更好的文章,希望本文高一数学教案:集合含义及其表示能给您带来帮助! 【学习目标】 1、感受数学探索的成功感,提高学习数学的兴趣; 2、经历诱导公式的探索过程,感悟由未知到已知、复杂到简单的数学转化思想。 3、能借助单位圆的对称性理解记忆诱导公式,能用诱导公式进行简单应用。 【学习重点】三角函数的诱导公式的理解与应用 【学习难点】诱导公式的推导及灵活运用 【知识链接】(1)单位圆中任意角α的正弦、余弦的定义 (2)对称性:已知点P(x,),那么,点P关于x轴、轴、原点对称的点坐标 【学习过程】 一、预习自学 阅读书第19页——20页内容,通过对-α、π-α、π+α、2π-α、α的终边与单位圆的交点的对称性规律的探究,结合单位圆中任意角的正弦、余弦的定义,从中自我发现归纳出三角函数的诱导公式,并写出下列关系: (1)- 407[导学案]4.4单位圆的对称性与诱导公式与 407[导学案]4.4单位圆的对称性与诱导公式 的正弦函数、余弦函数关系 (2)角407[导学案]4.4单位圆的对称性与诱导公式与角 407[导学案]4.4单位圆的对称性与诱导公式 的正弦函数、余弦函数关系 (3)角 407[导学案]4.4单位圆的对称性与诱导公式与角 407[导学案]4.4单位圆的对称性与诱导公式 的.正弦函数、余弦函数关系 (4)角 407[导学案]4.4单位圆的对称性与诱导公式与角 407[导学案]4.4单位圆的对称性与诱导公式 的正弦函数、余弦函数关系 二、合作探究 探究1、求下列函数值,思考你用到了哪些三角函数诱导公式?试总结一下求任意角的三角函数值的过程与方法。 (1) 407[导学案]4.4单位圆的对称性与诱导公式 (2) 407[导学案]4.4单位圆的对称性与诱导公式 (3)sin(-1650°); 探究2: 化简: 407[导学案]4.4单位圆的对称性与诱导公式 407[导学案]4.4单位圆的对称性与诱导公式(先逐个化简) 探究3、利用单位圆求满足 407[导学案]4.4单位圆的对称性与诱导公式 的角的集合。 三、学习小结 (1)你能说说化任意角的正(余)弦函数为锐角正(余)弦函数的一般思路吗? (2)本节学习涉及到什么数学思想方法? (3)我的疑惑有 【达标检测】 1、在单位圆中,角α的终边与单位圆交于点P(- 407[导学案]4.4单位圆的对称性与诱导公式 , 407[导学案]4.4单位圆的对称性与诱导公式 ), 则sin(-α)= ;cs(α±π)= ;cs(π-α)= 2.求下列函数值: (1)sin( 407[导学案]4.4单位圆的对称性与诱导公式 )= ; (2) cs210&rd;= 3、若csα=-1/2,则α的集合S= 学 习 目 标 1明确空间直角坐标系是如何建立;明确空间中任意一点如何表示; 2 能够在空间直角坐标系中求出点坐标 教 学 过 程 一 自 主 学 习 1平面直角坐标系建立方法,点坐标确定过程、表示方法? 2一个点在平面怎么表示?在空间呢? 3关于一些对称点坐标求法 关于坐标平面 对称点 ; 关于坐标平面 对称点 ; 关于坐标平面 对称点 ; 关于 轴对称点 ; 关于 对轴称点 ; 关于 轴对称点 ; 二 师 生 互动 例1在长方体 中, , 写出 四点坐标 讨论:若以 点为原点,以射线 方向分别为 轴,建立空间直角坐标系,则各顶点坐标又是怎样呢? 变式:已知 ,描出它在空间位置 例2 为正四棱锥, 为底面中心,若 ,试建立空间直角坐标系,并确定各顶点坐标 练1 建立适当直角坐标系,确定棱长为3正四面体各顶点坐标 练2 已知 是棱长为2正方体, 分别为 和 中点,建立适当空间直角坐标系,试写出图中各中点坐标 三 巩 固 练 习 1 关于空间直角坐标系叙述正确是( ) A 中 位置是可以互换 B空间直角坐标系中点与一个三元有序数组是一种一一对应关系 C空间直角坐标系中三条坐标轴把空间分为八个部分 D某点在不同空间直角坐标系中坐标位置可以相同 2 已知点 ,则点 关于原点对称点坐标为( ) A B C D 3 已知 三个顶点坐标分别为 ,则 重心坐标为( ) A B C D 4 已知 为平行四边形,且 , 则顶点 坐标 5 方程 几何意义是 四 课 后 反 思 五 课 后 巩 固 练 习 1 在空间直角坐标系中,给定点 ,求它分别关于坐标平面,坐标轴和原点对称点坐标 2 设有长方体 ,长、宽、高分别为 是线段 中点分别以 所在直线为 轴, 轴, 轴,建立空间直角坐标系 ⑴求 坐标; ⑵求 坐标; 教学目标 1、掌握平面向量的数量积及其几何意义; 2、掌握平面向量数量积的重要性质及运算律; 3、了解用平面向量的数量积可以处理垂直的问题; 4、掌握向量垂直的条件、 教学重难点 教学重点:平面向量的数量积定义 教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用 教学过程 1、平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ, 则数量|a||b|cosq叫a与b的数量积,记作a×b,即有a×b=|a||b|cosq,(0≤θ≤π)、 并规定0向量与任何向量的数量积为0、 ×探究:1、向量数量积是一个向量还是一个数量?它的符号什么时候为正?什么时候为负? 2、两个向量的数量积与实数乘向量的积有什么区别? (1)两个向量的数量积是一个实数,不是向量,符号由cosq的符号所决定、 (2)两个向量的数量积称为内积,写成a×b;今后要学到两个向量的外积a×b,而a×b是两个向量的数量的积,书写时要严格区分、符号“·”在向量运算中不是乘号,既不能省略,也不能用“×”代替、 (3)在实数中,若a?0,且a×b=0,则b=0;但是在数量积中,若a?0,且a×b=0,不能推出b=0、因为其中cosq有可能为0、 一、教学目标 1.知识与技能 (1)解二分法求解方程的近似解的思想方法,会用二分法求解具体方程的近似解; (2)体会程序化解决问题的思想,为算法的学习作准备。 2.过程与方法 (1)让学生在求解方程近似解的实例中感知二分发思想; (2)让学生归纳整理本节所学的知识。 3.情感、态度与价值观 ①体会二分法的程序化解决问题的思想,认识二分法的价值所在,使学生更加热爱数学; ②培养学生认真、耐心、严谨的数学品质。 二、 教学重点、难点 重点:用二分法求解函数f(x)的零点近似值的步骤。 难点:为何由︱a - b ︳< 便可判断零点的近似值为a(或b)? 三、 学法与教学用具 1.想-想。 2.教学用具:计算器。 四、教学设想 (一)、创设情景,揭示课题 提出问题: (1)一元二次方程可以用公式求根,但是没有公式可以用来求解放程 ㏑x+2x-6=0的根;联系函数的零点与相应方程根的关系,能否利用函数的有关知识来求她的根呢? (2)通过前面一节课的学习,函数f(x)=㏑x+2x-6在区间内有零点;进一步的问题是,如何找到这个零点呢? (二)、研讨新知 一个直观的想法是:如果能够将零点所在的范围尽量的缩小,那么在一定的精确度的要求下,我们可以得到零点的近似值;为了方便,我们通过“取中点”的方法逐步缩小零点所在的范围。 取区间(2,3)的中点2.5,用计算器算得f(2.5)≈-0.084,因为f(2.5)xf(3)<0,所以零点在区间(2.5,3)内; 再取区间(2.5,3)的中点2.75,用计算器算得f(2.75)≈0.512,因为f(2.75)xf(2.5)<0,所以零点在(2.5,2.75)内; 由于(2,3),(2.5,3),(2.5,2.75)越来越小,所以零点所在范围确实越来越小了;重复上述步骤,那么零点所在范围会越来越小,这样在有限次重复相同的步骤后,在一定的精确度下,将所得到的零点所在区间上任意的一点作为零点的近似值,特别地可以将区间的端点作为零点的近似值。例如,当精确度为0.01时,由于∣2.5390625-2.53125∣=0.0078125<0.01,所以我们可以将x=2.54作为函数f(x)=㏑x+2x-6零点的近似值,也就是方程㏑x+2x-6=0近似值。 这种求零点近似值的方法叫做二分法。 1.师:引导学生仔细体会上边的这段文字,结合课本上的相关部分,感悟其中的思想方法. 生:认真理解二分法的函数思想,并根据课本上二分法的一般步骤,探索其求法。 2.为什么由︱a - b ︳<便可判断零点的近似值为a(或b)? 先由学生思考几分钟,然后作如下说明: 设函数零点为x0,则a<x0<b,则: 0<x0-a<b-a,a-b<x0-b<0; 由于︱a - b ︳<,所以 ︱x0 - a ︳<b-a<,︱x0 - b ︳<∣ a-b∣<, 即a或b 作为零点x0的近似值都达到了给定的精确度。 (三)、巩固深化,发展思维 1.学生在老师引导启发下完成下面的例题 例2.借助计算器用二分法求方程2x+3x=7的近似解(精确到0.01) 问题:原方程的近似解和哪个函数的零点是等价的? 师:引导学生在方程右边的常数移到左边,把左边的式子令为f(x),则原方程的解就是f(x)的零点。 生:借助计算机或计算器画出函数的图象,结合图象确定零点所在的区间,然后利用二分法求解. (四)、归纳整理,整体认识 在师生的互动中,让学生了解或体会下列问题: (1)本节我们学过哪些知识内容? (2)你认为学习“二分法”有什么意义? (3)在本节课的学习过程中,还有哪些不明白的地方? (五)、布置作业 P92习题3.1A组第四题,第五题。 教学目标 1、掌握平面向量的数量积及其几何意义; 2、掌握平面向量数量积的重要性质及运算律; 3、了解用平面向量的数量积可以处理垂直的问题; 4、掌握向量垂直的条件、 教学重难点 教学重点:平面向量的数量积定义 教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用 教学过程 1、平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ, 则数量|a||b|cosq叫a与b的数量积,记作a×b,即有a×b=|a||b|cosq,(0≤θ≤π)、 并规定0向量与任何向量的数量积为0、 ×探究:1、向量数量积是一个向量还是一个数量?它的符号什么时候为正?什么时候为负? 2、两个向量的'数量积与实数乘向量的积有什么区别? (1)两个向量的数量积是一个实数,不是向量,符号由cosq的符号所决定、 (2)两个向量的数量积称为内积,写成a×b;今后要学到两个向量的外积a×b,而a×b是两个向量的数量的积,书写时要严格区分、符号“·”在向量运算中不是乘号,既不能省略,也不能用“×”代替、 (3)在实数中,若a?0,且a×b=0,则b=0;但是在数量积中,若a?0,且a×b=0,不能推出b=0、因为其中cosq有可能为0、 【教学目标与解析】 1、教学目标 (1)理解函数的概念; (2)了解区间的概念; 2、目标解析 (1)理解函数的概念就是指能用集合与对应的语言刻画函数,体会对应关系在刻画函数概念中的作用; (2)了解区间的概念就是指能够体会用区间表示数集的意义和作用; 【问题诊断分析】在本节课的教学中,学生可能遇到的问题是函数的概念及符号的理解,产生这一问题的原因是:函数本身就是一个抽象的概念,对学生来说一个难点。要解决这一问题,就要在通过从实际问题中抽象概况函数的概念,培养学生的抽象概况能力,其中关键是理论联系实际,把抽象转化为具体。 【教学过程】 问题1:一枚炮弹发射后,经过26s落到地面击中目标.炮弹的射高为845m,且炮弹距离地面的高度h(单位:m)随时间t(单位:s)变化的规律是:h=130t-5t2. 1.1这里的变量t的变化范围是什么?变量h的变化范围是什么?试用集合表示? 1.2高度变量h与时间变量t之间的对应关系是否为函数?若是,其自变量是什么? 设计意图:通过以上问题,让学生正确理解让学生体会用解析式或图象刻画两个变量之间的依赖关系,从问题的实际意义可知,在t的变化范围内任给一个t,按照给定的对应关系,都有的一个高度h与之对应。 问题2:分析教科书中的实例(2),引导学生看图并启发:在t的变化t按照给定的图象,都有的一个臭氧层空洞面积S与之相对应。 问题3:要求学生仿照实例(1)、(2),描述实例(3)中恩格尔系数和时间的关系。 设计意图:通过这些问题,让学生理解得到函数的定义,培养学生的归纳、概况的能力。 问题4:上述三个实例中变量之间的关系都是函数,那么从集合与对应的观点分析,函数还可以怎样定义? 4.1在一个函数中,自变量x和函数值y的变化范围都是集合,这两个集合分别叫什么名称? 4.2在从集合A到集合B的一个函数f:A→B中,集合A是函数的定义域,集合B是函数的值域吗?怎样理解f(x)=1,x∈R? 4.3一个函数由哪几个部分组成?如果给定函数的定义域和对应关系,那么函数的值域确定吗?两个函数相等的条件是什么? 一、指导思想: (1)随着素质教育的深入展开,《课程方案》提出了教育要面向世界,面向未来,面向现代化和教育必须为社会主义现代化建设服务,必须与生产劳动相结合,培养德、智、体等方面全面发展的社会主义事业的建设者和接班人的指导思想和课程理念和改革要点。使学生掌握从事社会主义现代化建设和进一步学习现代化科学技术所需要的数学知识和基本技能。 (2)培养学生的逻辑思维能力、运算能力、空间想象能力,以及综合运用有关数学知识分析问题和解决问题的能力。使学生逐步地学会观察、分析、综合、比较、抽象、概括、探索和创新的能力;运用归纳、演绎和类比的方法进行推理,并正确地、有条理地表达推理过程的能力。 (3) 根据数学的学科特点,加强学习目的性的教育,提高学生学习数学的自觉心和兴趣,培养学生良好的学习习惯,实事求是的科学态度,顽强的学习毅力和独立思考、探索创新的精神。 (4) 使学生具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,理解数学中普遍存在着的运动、变化、相互联系和相互转化的情形,从而进一步树立辩证唯物主义和历史唯物主义世界观。 (5)学会通过收集信息、处理数据、制作图像、分析原因、推出结论来解决实际问题的思维方法和操作方法。 (6)本学期是高一的重要时期,教师承担着双重责任,既要不断夯实基础,加强综合能力的培养,又要渗透有关高考的思想方法,为三年的学习做好准备。 二、学生状况分析 本学期担任高一(1)班和(5)班的数学教学工作,学生共有111人,其中(1)班学生是名校直通班,学生思维活跃,(5)班是火箭班,学生基本素质不错,一些基本知识掌握不是很好,学习积极性需要教师提高,成绩以中等为主,中上不多。两个班中,从军训一周来看,学生的学习积极性还是比较高,爱问问题的同学比较多,但由于基础知识不太牢固,上课效率不是很高。 教材简析 使用人教版《普通高中课程标准实验教科书数学(A版)》,教材在坚持我国数学教育优良传统的前提下,认真处理继承、借鉴、发展、创新之间的关系,体现基础性、时代性、典型性和可接受性等,具有亲和力、问题性、科学性、思想性、应用性、联系性等特点。必修1有三章(集合与函数概念;基本初等函数;函数的应用);必修4有三章(三角函数;平面向量;三角恒等变换)。 必修1,主要涉及两章内容: 第一章 集合 通过本章学习,使学生感受到用集合表示数学内容时的简洁性、准确性,帮助学生学会用集合语言表示数学对象,为以后的学习奠定基础。 1.了解集合的含义,体会元素与集合的属于关系,并初步掌握集合的表示方法;新-课-标-第-一-网 2.理解集合间的包含与相等关系,能识别给定集合的子集,了解全集与空集的含义; 3.理解补集的含义,会求在给定集合中某个集合的补集; 4.理解两个集合的并集和交集的含义,会求两个简单集合的并集和交集; 5.渗透数形结合、分类讨论等数学思想方法; 6.在引导学生观察、分析、抽象、类比得到集合与集合间的关系等数学知识的过程中,培养学生的思维能力。 第二章 函数的概念与基本初等函数Ⅰ 教学本章时应立足于现实生活从具体问题入手,以问题为背景,按照问题情境数学活动意义建构数学理论数学应用回顾反思的顺序结构,引导学生通过实验、观察、归纳、抽象、概括,数学地提出、分析和解决问题。通过本章学习,使学生进一步感受函数是探索自然现象、社会现象基本规律的工具和语言,学会用函数的思想、变化的观点分析和解决问题,达到培养学生的创新思维的目的。 1.了解函数概念产生的背景,学习和掌握函数的概念和性质,能借助函数的知识表述、刻画事物的变化规律;X|k |b| 1 . c|o |m 2.理解有理指数幂的意义,掌握有理指数幂的运算性质;掌握指数函数的概念、图象和性质;理解对数的概念,掌握对数的运算性质,掌握对数函数的'概念、图象和性质;了解幂函数的概念和性质,知道指数函数、对数函数、幂函数时描述客观世界变化规律的重要数学模型; 3.了解函数与方程之间的关系;会用二分法求简单方程的近似解;了解函数模型及其意义; 4.培养学生的理性思维能力、辩证思维能力、分析问题和解决问题的能力、创新意识与探究能力、数学建模能力以及数学交流的能力。 必修4,主要涉及三章内容: 第一章 三角函数 通过本章学习,有助于学生认识三角函数与实际生活的紧密联系,以及三角函数在解决实际问题中的广泛应用,从中感受数学的价值,学会用数学的思维方式观察、分析现实世界、解决日常生活和其他学科学习中的问题,发展数学应用意识。 1.了解任意角的概念和弧度制; 2.掌握任意角三角函数的定义,理解同角三角函数的基本关系及诱导公式; 3.了解三角函数的周期性; 4.掌握三角函数的图像与性质。 第二章 平面向量 在本章中让学生了解平面向量丰富的实际背景,理解平面向量及其运算的意义,能用向量的语言和方法表述和解决数学和物理中的一些问题,发展运算能力和解决实际问题的能力。 1.理解平面向量的概念及其表示; 2.掌握平面向量的加法、减法和向量数乘的运算; 3.理解平面向量的正交分解及其坐标表示,掌握平面向量的坐标运算; 4.理解平面向量数量积的含义,会用平面向量的数量积解决有关角度和垂直的问题。 第三章 三角恒等变换 通过推导两角和与差的余弦、正弦、正切公式,二倍角的正弦、余弦、正切公式以及积化和差、和差化积、半角公式的过程,让学生在经历和参与数学发现活动的基础上,体会向量与三角函数的联系、向量与三角恒等变换公式的联系,理解并掌握三角变换的基本方法。 1.掌握两角和与差的余弦、正弦、正切公式; 2.掌握二倍角的正弦、余弦、正切公式 ; 3.能正确运用三角公式进行简单的三角函数式的化简、求值和恒等式证明。 三、教学任务 本期授课内容为必修1和必修4,必修1在期中考试前完成(约在11月5日前完成);必修4在期末考试前完成(约在12月31日前完成)。 四、教学质量目标新 课 标 1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,体会数学思想和方法。 2.提高空间想象、抽象概括、推理论证、运算求解、数据处理等基本能力。 3.提高学生提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。 4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。 5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。 6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。 五、促进目标达成的重点工作及措施 重点工作: 认真贯彻高中数学新课标精神,树立新的教学理念,以双基教学为主要内容,坚持抓两头、带中间、整体推进,使每个学生的数学能力都得到提高和发展。 分层推进措施 1、重视学生非智力因素培养,要经常性地鼓励学生,增强学生学习数学兴趣,树立勇于克服困难与战胜困难的信心。 2、合理引入课题,由数学活动、故事、提问、师生交流等方式激发学生学习兴趣,注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。 3、培养能力是数学教学的落脚点。能力是在获得和运用知识的过程中逐步培养起来的。在衔接教学中,首先要加强基本概念和基本规律的教学。 加强培养学生的逻辑思维能力和解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。 4、讲清讲透数学概念和规律,使学生掌握完整的基础知识,培养学生数学思维能力 ,抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。 5、自始至终贯彻教学四环节(引入、探究、例析、反馈),针对不同的教材内容选择不同教法,提倡创新教学方法,把学生被动接受知识转化主动学习知识。 6、重视数学应用意识及应用能力的培养。 7、加强学生良好学习习惯的培养 六、教学时间大致安排 集合与函数概念 13 课时 基本初等函数 15 课时 函数的应用 8 课时 三角函数 24 课时 平面向量 14 课时 三角恒等变换 9 课时 一、教学目标 (1)了解含有“或”、“且”、“非”复合命题的概念及其构成形式; (2)理解逻辑联结词“或”“且”“非”的含义; (3)能用逻辑联结词和简单命题构成不同形式的复合命题; (4)能识别复合命题中所用的逻辑联结词及其联结的简单命题; (5)会用真值表判断相应的复合命题的真假; (6)在知识学习的基础上,培养学生简单推理的技能. 二、教学重点难点: 重点是判断复合命题真假的方法;难点是对“或”的含义的理解. 三、教学过程 1.新课导入 在当今社会中,人们从事任何工作、学习,都离不开逻辑.具有一定逻辑知识是构成一个公民的文化素质的重要方面.数学的特点是逻辑性强,特别是进入高中以后,所学的教学比初中更强调逻辑性.如果不学习一定的逻辑知识,将会在我们学习的过程中不知不觉地经常犯逻辑性的错误.其实,同学们在初中已经开始接触一些简易逻辑的知识. 初一平面几何中曾学过命题,请同学们举一个命题的例子.(板书:命题.) (从初中接触过的“命题”入手,提出问题,进而学习逻辑的有关知识.) 学生举例:平行四边形的对角线互相平. ……(1) 两直线平行,同位角相等.…………(2) 教师提问:“……相等的角是对顶角”是不是命题?……(3) (同学议论结果,答案是肯定的.) 教师提问:什么是命题? (学生进行回忆、思考.) 概念总结:对一件事情作出了判断的语句叫做命题. (教师肯定了同学的回答,并作板书.) 由于判断有正确与错误之分,所以命题有真假之分,命题(1)、(2)是真命题,而(3)是假命题. (教师利用投影片,和学生讨论以下问题.) 例1 判断以下各语句是不是命题,若是,判断其真假: 命题一定要对一件事情作出判断,(3)、(4)没有对一件事情作出判断,所以它们不是命题. 初中所学的命题概念涉及逻辑知识,我们今天开始要在初中学习的基础上,介绍简易逻辑的知识. 2.讲授新课 大家看课本(人教版,试验修订本,第一册(上))从第25页至26页例1前,并归纳一下这段内容主要讲了哪些问题? (片刻后请同学举手回答,一共讲了四个问题.师生一道归纳如下.) (1)什么叫做命题? 可以判断真假的语句叫做命题. 判断一个语句是不是命题,关键看这语句有没有对一件事情作出了判断,疑问句、祈使句都不是命题.有些语句中含有变量,如 x2-5x+6=0 中含有变量 ,在不给定变量的值之前,我们无法确定这语句的真假(这种含有变量的语句叫做“开语句”). (2)介绍逻辑联结词“或”、“且”、“非”. “或”、“且”、“非”这些词叫做逻辑联结词.逻辑联结词除这三种形式外,还有“若…则…”和“当且仅当”两种形式. 命题可分为简单命题和复合命题. 不含逻辑联结词的命题叫做简单命题.简单命题是不含其他命题作为其组成部分(在结构上不能再分解成其他命题)的命题. 由简单命题和逻辑联结词构成的命题叫做复合命题,如“6是自然数且是偶数”就是由简单命题“6是自然数”和“6是偶数”由逻辑联结词“且”构成的复合命题. (4)命题的表示:用p ,q ,r ,s ,……来表示. (教师根据学生回答的情况作补充和强调,特别是对复合命题的概念作出分析和展开.) 我们接触的复合命题一般有“p 或q ”“p且q ”、“非p ”、“若p 则q ”等形式. 给出一个含有“或”、“且”、“非”的复合命题,应能说出构成它的简单命题和弄清它所用的逻辑联结词;应能根据所给出的两个简单命题,写出含有逻辑联结词“或”、“且”、“非”的复合命题. 对于给出“若p 则q ”形式的复合命题,应能找到条件p 和结论q . 在判断一个命题是简单命题还是复合命题时,不能只从字面上来看有没有“或”、“且”、“非”.例如命题“等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合”,此命题字面上无“且”;命题“5的倍数的末位数字不是0就是5”的字面上无“或”,但它们都是复合命题. 3.巩固新课 例2 判断下列命题,哪些是简单命题,哪些是复合命题.如果是复合命题,指出它的构成形式以及构成它的简单命题. (1)5 ; (2)0.5非整数; (3)内错角相等,两直线平行; (4)菱形的对角线互相垂直且平分; (5)平行线不相交; (6)若ab=0 ,则a=0 . (让学生有充分的时间进行辨析.教材中对“若…则…”不作要求,教师可以根据学生的情况作些补充.) 教学目标: 1、理解对数的概念,能够进行对数式与指数式的互化; 2、渗透应用意识,培养归纳思维能力和逻辑推理能力,提高数学发现能力。 教学重点: 对数的概念 教学过程: 一、问题情境: 1、(1)庄子:一尺之棰,日取其半,万世不竭、①取5次,还有多长?②取多少次,还有0、125尺? (2)假设20xx年我国国民生产总值为a亿元,如果每年平均增长8%,那么经过多少年国民生产总值是20xx年的2倍? 抽象出:1、=?,=0、125x=?2、=2x=? 2、问题:已知底数和幂的值,如何求指数?你能看得出来吗? 二、学生活动: 1、讨论问题,探究求法、 2、概括内容,总结对数概念、 3、研究指数与对数的关系、 三、建构数学: 1)引导学生自己总结并给出对数的概念、 2)介绍对数的表示方法,底数、真数的含义、 3)指数式与对数式的关系、 4)常用对数与自然对数、 探究: ⑴负数与零没有对数、 ⑵,、 ⑶对数恒等式(教材P58练习6) ①;②、 ⑷两种对数: ①常用对数:; ②自然对数:、 (5)底数的取值范围为;真数的取值范围为、 四、数学运用: 1、例题: 例1、(教材P57例1)将下列指数式改写成对数式: (1)=16;(2)=;(3)=20;(4)=0、45、 例2、(教材P57例2)将下列对数式改写成指数式: (1);(2)3=—2;(3);(4)(补充)ln10=2、303 例3、(教材P57例3)求下列各式的值: ⑴;⑵;⑶(补充)、 2、练习: P58(练习)1,2,3,4,5、 五、回顾小结: 本节课学习了以下内容: ⑴对数的定义; ⑵指数式与对数式互换; ⑶求对数式的值(利用计算器求对数值)、 六、课外作业:P63习题1,2,3,4、 教学目的: (1)理解两个集合的并集与交集的的含义,会求两个简单集合的并集与交集; (2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集; (3)能用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。 教学重点: 集合的交集与并集、补集的概念; 教学难点: 集合的交集与并集、补集“是什么”,“为什么”,“怎样做”; 【知识点】 1、并集 一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集(Union) 记作:A∪B读作:“A并B” 即:A∪B={x|x∈A,或x∈B} Venn图表示: 第4 / 7页 A与B的所有元素来表示。 A与B的交集。 2、交集 一般地,由属于集合A且属于集合B的元素所组成的集合,叫做集合A与B的交集(intersection)。 记作:A∩B读作:“A交B” 即:A∩B={x|∈A,且x∈B} 交集的Venn图表示 说明:两个集合求交集,结果还是一个集合,是由集合A与B的'公共元素组成的集合。 拓展:求下列各图中集合A与B的并集与交集 A 说明:当两个集合没有公共元素时,两个集合的交集是空集,不能说两个集合没有交集 3、补集 全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集(Universe),通常记作U。 补集:对于全集U的一个子集A,由全集U中所有不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集(complementary set),简称为集合A的补集, 记作:CUA 即:CUA={x|x∈U且x∈A} 第5 / 7页 补集的Venn图表示 说明:补集的概念必须要有全集的限制 4、求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分 交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法。 5、集合基本运算的一些结论: A∩B?A,A∩B?B,A∩A=A,A∩?=?,A∩B=B∩A A?A∪B,B?A∪B,A∪A=A,A∪?=A,A∪B=B∪A (CUA)∪A=U,(CUA)∩A=? 若A∩B=A,则A?B,反之也成立 若A∪B=B,则A?B,反之也成立 若x∈(A∩B),则x∈A且x∈B 若x∈(A∪B),则x∈A,或x∈B ¤例题精讲: 【例1】设集合U?R,A?{x|?1?x?5},B?{x|3?x?9},求A?B,?U(A?B)。解:在数轴上表示出集合A、B。 【例2】设A?{x?Z||x|?6},B??1,2,3?,C??3,4,5,6?,求: (1)A?(B?C);(2)A??A(B?C)。 【例3】已知集合A?{x|?2?x?4},B?{x|x?m},且A?B?A,求实数m的取值范围。 XX且x?N}【例4】已知全集U?{x|x?10,,A?{2,4,5,8},B?{1,3,5,8},求 CU(A?B),CU(A?B),(CUA)?(CUB),(CUA)?(CUB),并比较它们的关系。高一数学教案 篇16
高一数学教案 篇17
高一数学教案 篇18
高一数学教案 篇19
高一数学教案 篇20
高一数学教案 篇21
高一数学教案 篇22
高一数学教案 篇23
高一数学教案 篇24
高一数学教案 篇25
高一数学教案 篇26
高一数学教案 篇27
高一数学教案 篇28
高一数学教案 篇29
高一数学教案 篇30
高一数学教案 篇31
高一数学教案 篇32
高一数学教案 篇33
高一数学教案 篇34
高一数学教案 篇35
高一数学教案 篇36
高一数学教案 篇37
高一数学教案 篇38
高一数学教案 篇39
高一数学教案 篇40
高一数学教案 篇41
高一数学教案 篇42
高一数学教案 篇43
高一数学教案 篇44
高一数学教案 篇45
高一数学教案 篇46
高一数学教案 篇47
高一数学教案 篇48
高一数学教案 篇49
高一数学教案 篇50
高一数学教案 篇51
高一数学教案 篇52
高一数学教案 篇53
高一数学教案 篇54
高一数学教案 篇55
高一数学教案 篇56
高一数学教案 篇57
高一数学教案 篇58
高一数学教案 篇59
高一数学教案 篇60
高一数学教案 篇61
高一数学教案 篇62
高一数学教案 篇63
高一数学教案 篇64
高一数学教案 篇65
高一数学教案 篇66
高一数学教案 篇67
高一数学教案 篇68
高一数学教案 篇69
高一数学教案 篇70
高一数学教案 篇71
高一数学教案 篇72
高一数学教案 篇73
高一数学教案 篇74
高一数学教案 篇75
高一数学教案 篇76
高一数学教案 篇77
高一数学教案 篇78
高一数学教案 篇79
高一数学教案 篇80
高一数学教案 篇81
高一数学教案 篇82
高一数学教案 篇83
高一数学教案 篇84
高一数学教案 篇85
高一数学教案 篇86
高一数学教案 篇87
高一数学教案 篇88
高一数学教案 篇89
高一数学教案 篇90
高一数学教案 篇91
高一数学教案 篇92
高一数学教案 篇93
高一数学教案 篇94
高一数学教案 篇95
高一数学教案 篇96
高一数学教案 篇97