五年级上册数学简易方程教学设计
老地方整理的五年级上册数学简易方程教学设计(精选5篇),希望这些优秀内容,能够帮助到大家。
五年级上册数学简易方程教学设计 篇1
【教学内容】
教材第74页例2和练习十六的第1、5~11题。
【教学目标】
1.通过教学使学生学会解形如ax±b=c的方程,并能正确列出这种形式的方程解应用题。
2.培养学生的分析能力。
3.引导学生感受列方程解应用题的优越性,在多种方法中选择简单的方法解决问题。
【重点难点】
掌握解ax±b=c形式的方程的方法,并能正确找出题中数量间的相等关系。
【教学准备】
多媒体课件。
教学过程
【复习导入】
1.准备练习。(1)解方程。
4x=100 x-2.5=3 2x=15
根据已知条件列出方程。
①我们班有女生x人,男生60人,比女生的2倍少6人。
②我们班最低的同学身高x厘米,最高的同学身高170厘米,比最低同学身高的2倍少100厘米。
③亚洲人口约有39亿,比欧洲人口的5倍多4亿。欧洲人口约有x亿。
2.导入新课:这节课我们继续学习实际问题与方程。并板书:
【新课讲授】
1.出示例2。
师:观察主题图,你能获取什么信息?
学生讨论、汇报。
2.探究解决问题的方法。
提问:白色皮块数与黑色皮块数之间有什么关系呢?观察下面的线段图你能 说出它们的数量关系式吗?
教师演示画线段图:
小组讨论,汇报:
黑色皮的块数×2-4=白色皮的块数
黑色皮的.块数×2=白色皮的块数+4
黑色皮的块数×2-白色皮的块数=4
师:同学们都很细心,观察得非常仔细。用我们学过的列方程解应用题的知识怎样求黑色皮有多少块呢?
小组讨论交流、汇报:
方法一:根据等量关系式:黑色皮的块数×2-4=白色皮的块数,把黑色皮块数设为x,列方程,再求出x。
2x-4=20
方法二:根据等量关系式:黑色皮的块数×2=白色皮的块数+4,把黑皮块数设为x,列方程,再求出x。
2x=20+4
方法三:根据等量关系式:黑色皮的块数×2-白色皮的块数=4,把黑色皮的块数设为x,列方程,再求出x。
2x-20=4
师:同学们很善于动脑筋。根据不同的数量关系列出了比较复杂的方程,但是怎样解这些方程呢?
3.探究列方程解决实际问题的步骤。
师:方程2x-20=4,2x=20+4和2x-4=20都比我们前面学到的更复杂了一些,怎样解这样的方程呢?
要求黑色皮的块数,根据题意,应该先求黑色皮的块数的2倍,即先求2x。因此,先把2x看作一个整体,再求x等于多少。
板书:2x-20=4
2x-20+20=4+20
2x=24
请学生独立完成下面的过程,求出x,写清过程,并检验。然后再把另外两个方程也解出来。
学生解答后,指名板演以上三种不同方法所列出的方程的解法。
方法一: 方法二: 方法三:
2x-4=20 2x=20+4 2x-20=4
2x-4+4=20+4 2x=24 2x-20+20=4+20
2x=24 2x÷2=24÷2 2x=24
2x÷2=24÷2 x=12 2x÷2=24÷2
x=12 x=12
提问:比较这三个方程的解法你发现什么相同之处?(发现它们都是转化为2x=24再解)
老师小结:像上面这样形式的方程,我们可以把2x看作一个整体,先求出2x等于多少,再求出x等于多少。
解方程步骤:(1)找出未知数,用字母x表示;
(2)分析实际问题中的数量关系,找出等量关系,列方程;
(3)解方程并检验作答。
4.即时巩固。
解方程:
3x+6=36 2x-7.5=8.5 3+2x=12
【课堂作业】
1.学生独立完成课本第75页练习十六第1题。
完成后集体订正。对于4x-3×9=29这道题给予适当指导,可以先算3×9。
2.完成教材第75页练习十六第5、6题。
师:结合上面的练习和刚才的例1,请同学们思考:列方程解决问题的步骤是什么?哪一步最关键?(找等量关系)
引导学生归纳:(用多媒体出示)
(1)弄清题意,找出未知数,用x表示;
(2)分析,找出数量间相等的关系,列方程;
(3)解方程;
(4)检验,写出答案。
【课堂小结】
这节课你又学习了什么新知识?有什么收获?
【课后作业】
教材第76页练习十六第7~11题。
五年级上册数学简易方程教学设计 篇2
【教学内容】
教材第69页例4、例5、“做一做”和练习十五的第8-14题。
【教学目标】
1.进一步掌握转化的思路,正确解答二步计算的方程。
2.在掌握ax±b=c和a(x±b)=c的方程解法的基础上,学会找出等量关系,用列方程的方法解答二步计算的文字题。
3.养成分析的习惯,训练严谨的学习态度。 培养学生用不同的'方法解决问题的思维方式。
【重点难点】
1.掌握ax±b=c和a(x±b)=c的方程解法。
2.看图找出等量关系,并根据等量关系列出方程解决问题。
【教学准备】
多媒体课件。
【复习导入】
1.解下列各方程,并说明解题的思路与解法根据。
(1)3.8-x=2.9(2)5x=12.5
学生独立完成后相互交流。
小结:这两道题是最基础的解方程题目。根据等式的性质,就可以求解了。
2.出示例4的情景图,学生思考:怎样列方程呢?
学生相互讨论。
这道题与以前学过的解方程有什么不一样的呢?(学生回答)那这节课我们一起来继续学习解方程。
板书课题。
【新课讲授】
1.教学例4。
(1)出示例4情景图。
(2)如何列出方程呢?
学生讨论,汇报。
引导分析:先找出题中的已知与未知数量关系,列出等量关系式,再根据等量关系列出方程:
等量关系式:图中有3盒铅笔和4支铅笔一共是40支,3盒铅笔+4支铅笔=40支铅笔,已知每盒铅笔x支,三盒共3x支。
列方程为:3x+4=40
(3)追问:这种方程该怎么解呢?
学生尝试解题,然后说出解题思路。
引导学生小结:可以把3x看作一个整体,就是三盒铅笔的总数,再利用等式的性质,左右同时减去4,就将方程变成了我们学过的一般方程:3x=36,然后左右同时除以3,得x=12。
完整的解题过程:
解:3x+4=40
3x+4-4=40-4
3x=36
3x÷3=36÷3
x=12
答:每盒铅笔有12支。
学生写出检验过程。
(4)这样一类方程应该如何解呢?
学生讨论后汇报交流。
教师引导小结:先把含有未知数的那一项看作是一个整体,利用等式的性质把方程变成只有两项,再求解。
2.教学例5。
(1)出示例5:解方程2(x-16)=8。
(2)观察、讨论:这个方程能不能利用例4所学的方法解呢?
学生讨论后交流。
教师引导:可以把(x-16)看作是一个整体。
学生尝试解题,指定一名学生板演,集体讲评。
解方程2(x-16)=8。
解:2(x-16)÷2=8÷2把什么当作一个整体?
x-16=4
x-16+16=4+16
x=20
学生完成检验过程。
(3)想一想:还有没有其他的解法呢?
学生分组讨论,然后汇报。
引导小结:可以先把2(x-16)变成2x-32,及时提问:这一步运用什么定律?(学生回答:乘法分配律)那方程就变成了2x-32=8,再利用例4的方法解。
学生独立写出解答过程。
解方程2(x-16)=8。
解:2x-32=8运用了什么运算定律?
2x-32+32=8+32
2x=40
2x÷2=40÷2
x=20
检验:方程左边=2(20-16)
=40-32
=8=方程右边
所以,x=20是方程的解。
(4)引导学生小结:在解较复杂的方程时,可以先将一个式子当作一个整体,变成了一般方程再利用等式的性质求解,记住解完方程后要检验。
【课堂巩固】
完成课本第69页“做一做”。
学生独立思考,独立完成解答过程,然后师生共同分析、讲解。
【课堂小结】
提问:同学们,这一节课你又学会了哪些类型的方程?有什么收获呢?
小结:这节课,我们知道在解较复杂的方程时,可以先将一个式子当作一个整体,变成了一般方程再利用等式的性质求解,记住解完方程后要检验。
【课后作业】
1.完成教材第71~72页练习十五第8~14题。
五年级上册数学简易方程教学设计 篇3
【教学内容】
教材第79页例5、“做一做”和练习十七第11~15题。
【教学目标】
1.使学生掌握利用线段图来分析题中的数量关系,列方程解决实际问题。
2.学会设计一个未知数,列方程解答含有两个未知数的实际问题。
3.培养学生学会比较、分析、并能应用已学知识解决实际问题的能力。
【重点难点】
1.根据数量关系正确地列出方程并解答。
2.利用线段图来分析题中的数量关系。
【教学准备】
多媒体课件。
【复习导入】
1.果园里有桃树45棵,杏树的棵数是桃树的3倍,两种树一共有多少棵?
学生先讨论后尝试找出题中的数量关系,列出等量关系式,学生独立完成后相互交流。
2.解方程。
2(x+5.7x)=24 2x+2.5x=15
两名学生板演,并交流解答过程。
3.提问:路程、时间与速度之间有怎样的关系?
学生讨论、回答。
4.导入新课:这节课我们继续来学习用方程解决实际问题。(出示课题并板书。)
【新课讲授】
教学例5。
1.出示例5情景图。小林和小云家相距4.5千米,小林每分钟骑250米,小云每分钟骑200米,周日早晨9:00他们相向而行,他们什么时候能相遇?
2.学生读题,找出有用的信息。
3.阅读与理解:找等量关系,列方程。
师:请同学们先思考下面的问题:
(1)题中有几个未知量?
(2)设什么为x比较合适,为什么?
(3)问题中包含有怎样的等量关系?怎样用线段图来表示这些等量关系呢?
(4)应该怎样列方程?
汇报交流,总结:
(1)题中有两个未知量,小林行驶的路程和小云行驶的路程。
(2)根据两人相遇的时间相同,设他们相遇的时间为x分钟,那么小林行驶的路程是250x、小云行驶的路程200x。
(3)根据小林行驶的路程+小云行驶的路程=总路程
用线段图表示为:(出示线段图)
先由学生讲述怎样根据题意画线段图,然后教师讲解。
(4)列方程:250x+200x=4500
讲解:用方程解决问题,一定要先分析题意,找出等量关系再列方程求解。一般的`情况下,我们用画线段图的方法来分析理解题意。
4.解方程。
师:你会解这个方程吗?
学生独立完成后交流。
课件出示:
解:设两人相遇的时间为x分钟。
小林行驶的路程+小云行驶的路程=总路程
4.5km=4500m
250x+200x=4500
450x=4500依据是什么?
450x÷450=4500÷450
x=10
提问:还有没有其他的做法呢?
学生小组讨论后尝试其他解法,并汇报交流。
5.检验。
师:我们做得对吗?如何检验呢?
学生讨论、汇报交流。
教师强调学生牢记检验和答句。
6.回顾与反思。
师:如何用线段图来分析题意,找出数量关系呢?
学生讨论、小组代表回答。
引导学生小结:画线段图的步骤:弄清题意,找出已知与未知,写出等量关系,确定线段所表示的意义,列方程解答。
【课堂作业】
完成课本第82页练习十七第11题。
让学生先说出题目的等量关系,用线段图来进行分析,再列方程解答。
分析:数量关系式是:甲车行驶路程+乙车行驶路程=总路程
答案:解:设两车经过x小时相遇。
甲车行驶路程+乙车行驶路程=总路程
110x+80x=570
190x=570
x=3
检验:将x=3代入方程,方程左边=110×3+80×3=330+240=570=方程右边
所以x=3是原方程的解。
答:两车经过3小时相遇。
【课堂小结】
提问:同学们,通过这节课的学习,你知道怎样用画线段图的方法来解决实际问题了吗?
小结:用方程解决实际问题的步骤:
画线段图的步骤:弄清题意,找出已知与未知,写出等量关系,确定线段所表示的意义,列方程解答。
强调注意单位要统一,解完方程后要检验,并写出答句。
【课后作业】
完成课本第82页练习十七的12~15题。
五年级上册数学简易方程教学设计 篇4
【教学内容】
教材第62、63页的内容,练习十四的第1~3题。
【教学目标】
1.通过教学,使学生理解与掌握方程的意义和等式的基本性质。
2.培养学生观察、归纳和概括的能力。
3.培养学生仔细观察的良好习惯。
【重点难点】
理解方程的意义。
【教学准备】
多媒体课件,自制天平教具。
【情景导入】
在下面算式的○里填上“>”、“<”或“=”。
3×6○19 7○1.8+5.2
2.5÷5○2×0.25 24+11○11+24
3.9-3○4÷5 15×8+2○120+2
小结:像7=1.8+5.2,2.5÷5=2×0.25,24+11=11+24,15×8+2=120+2这样的式子叫做等式。这节课我们就来研究有关等式的问题。
【新课讲授】
1.激趣导入。
师:同学们在游乐场玩过跷跷板的游戏吗?(多媒体出示小朋友玩跷跷板的画面)如果两端的小朋友重量一样,会出现什么情况呢?这就是平衡。
2.方程的意义。
(1)认识天平。
出示简易天平、砝码。
提问:同学们知道这是什么?它是用来干什么的?怎样用天平来称物品的重量呢?
师:这是一台天平,用来称量物体的重量。在天平的左盘内放置所称的物品,右盘内放置砝码,当天平的指针在标尺中间时,表示天平平衡,也就是天平两端的重量相等,砝码上所标的重量就是所称物体的重量。
(2)实验演示,引出方程。
师:下面我来演示一下如何用天平称物品的重量。
演示实验一:称出一只空杯子重100克。
提问:天平平衡了吗?这说明一只空杯子重多少克?
板书:一只空杯子=100克
演示实验二:往空杯子里倒入约150毫升水(可在水中滴几滴红墨水显示)。
提问:现在天平怎样?如果水重x克,杯子和水共重多少克?你能用一个式子来表示吗?
板书:100+x>100
演示实验三:增加100克砝码。
提问:增加100克砝码,发现了什么?(杯子和水比200克重)
如果将水设为x克,那么用一个式子该怎么表示杯子和水比200克重这个关系呢?
板书:100+x>200
演示实验四:再增加100克砝码,天平往砝码这边倾斜。
提问:现在哪边重些?怎样用式子表示?
板书:100+x<300
演示实验五:把100克砝码换成50克,天平出现平衡。
提问:现在天平怎样?你能用一个式子来表示天平是平衡的吗?
板书:100+x=250
(3)理解“等式”、“不等式”和“方程”的意义。
出示多幅天平图。
提问:这些图你能用式子表示吗?
板书:40+x=100,2x+50<180,80+70=100+50,3x=180,65+30>80,100+2x=50×3。
教师指出:像2x+50<180,65+30>80这样用大于、小于号连成的式子,它们左右两边不相等,就叫做不等式。像40+x=100,80+70=100+50这样用等号连接成的.式子,它们左右两边相等,就叫做等式。
师:观察以上有几个是等式,你能不能分类,也说一说你分类的标准?(同桌讨论)
可以分成两类:
第一类:80+70=100+50。
第二类:40+x=1003x=180100+2x=50×3
讲解:像第二类这样,含有未知数的等式叫做方程。
提问:说一说什么叫方程?必须具备哪几个条件?
(一必须是等式,二必须含有未知数)
师:你能举例说明什么是方程吗?(根据学生发言,教师板书。)
老师再板书几个一般的等式,如:
20+80=100 3×78=234 13-8=5
引导学生观察、对比、思考:方程有什么特点?方程与等式之间有什么联系呢?
小组讨论,先在组内说一说,再全班说。
根据学生发言,教师加以引导,使学生明确:等式包括方程,等式的范围比方程的范围大;方程都是等式,但等式不一定是方程。你能用图示表示出来吗?
板书:
【课堂作业】
1.完成课本第63页的“做一做”。
2.我是小法官,对错我来判。(对的在括号内打“√”,错的打“X”)
(1)含有未知数的式子都是方程。()
(2)4m-9=0不是方程。()
(3)方程是等式。()
3.用方程表示下面的数量关系。
【课堂小结】
提问:这节课你学习了什么?有什么收获?
小结:这节课,我们学习了等式、不等式和方程。方程和等式既有区别又有联系,方程必须是含有未知数的等式,而等式只要等号两边数值相等即可,所以等式包括方程,但等式不一定是方程。
【课后作业】
完成教材练习十四的第1~3题。
五年级上册数学简易方程教学设计 篇5
【教学内容】
教材第54页例3和练习十二的第5-13题。
【教学目标】
1.使学生在旧知识的基础上,进一步认识用字母表示运算定律和计算公式;理解用字母表示数的意义;知道一个数的平方的含义,学会在含有字母的式子里简写和略写乘号。
2.使学生能够语言表达运算定律和字母公式,能够将数字代入字母公式进行计算,培养学生的抽象概括能力。
3.渗透字母表示运算定律和公式的简单美。
【重点难点】
1.用字母表示运算定律和公式;根据字母公式求值。
2.理解一个数的平方的含义,乘号的简写和略写。
【教学准备】
多媒体课件、小黑板。
教学过程:
【情景导入】
1.在()里填上适当的数,并说明根据什么。(投影出示)
18+34=34+()(加法交换律)
(357+55)+45=357+(+)(加法结合律)
35×()=59×()(乘法交换律)
(1.2×2.5)×4=1.2×(×)(乘法结合律)
(4+8)×3.5=()×3.5+()×()(乘法分配律)
2.你能用字母表示这些运算定律吗?还记得这些运算定律的文字叙述吗?
3.讨论交流:我们用文字描述了这些运算定律,但是文字很多,有什么办法更简便呢?
学生汇报交流:用字母来表示运算定律比用文字叙述运算定律更简便。
4.揭示课题:这节课,我们就来继续研究用字母表示数。(板书课题)
【新课讲授】
1.教学例3中的`第(1)题。
(1)结合课前引入,多媒体出示例3(1)的情景图,引导学生用字母表示这些运算定律。
(2)先在组内说一说,然后按照教材中的表格填写在书上。
填写表格,全班交流。
(3)体会用字母表示数的简便性。
提问:通过刚才的回忆、整理、交流、展示,你从中发现了什么?
引导总结:用字母表示运算定律比用文字叙述运算定律更简明易记、便于应用。
(4)介绍乘号的不同表示方法。
师:同学们的眼睛可真亮!发现了用字母表示运算定律比用文字叙述运算定律更简明易记、便于应用。其实,在这些含有字母的式子里,还可以进一步简化。请大家认真观察屏幕,看你能发现什么?(多媒体出示)
学生小组讨论,交流,然后全班汇报。
引导小结:在含有字母的式子里,字母中间的乘号可以记作“·”,也可以省略不写。比如a×b=b×a可记作:成a·b=b·a或ab=ba。
师:下面请大家再用简便的形式把运算定律写一遍。
学生独立完成用字母表示运算定律。
2.教学例3中的第(2)题。
(1)用字母表示计算公式。
师:同学们,如果用S表示面积,用C表示周长,正方形的面积和周长怎样用字母表示呢?
(多媒体出示例3(2)图。)
学生活动:尝试用字母表示正方形的面积和周长,小组内交流。全班汇报, 教师学生明确:
①关于“平方”的表示方法。
师:在正方形的面积公式S=a·a中出现a·a,也可以写成a2,读作“a的平方”,表示两个a相乘,所以正方形的面积公式一般写成S=a2。
讨论:a2也可以写成a×2,对吗?
小组讨论,说明理由,教师引导小结:
a=a·a,表示两个a相乘。
a×2=a+a,表示两个a相加。
即时巩固:完成教材第56页练习十二第6题。
(反馈时注意:a不能与a×2连线,6不能与6×2连线。)
②在周长公式C=a·4中,在省略乘号时,一般把数字写在字母的前面,即C=4a。
即时巩固:完成教材第56页练习十二第5题。
(2)用字母公式计算面积和周长。
师:同学们,我们已经知道用字母可以表示公式,下面请你用字母公式求出正方形的面积和周长。
学生试口述计算求值过程。
师:我们在计算正方形的面积和周长时,实际就是把已知数代入了相关的公式,算出的结果就是面积和周长。
板演示范正方形面积的代入计算过程:
S=a=6×6=36(cm)
强调:在利用公式求面积或周长时,首先要写出公式,然后把字母表示的数代入公式中进行计算,计算时不写出单位名称,但要写答句。
学生试按要求独立完成正方形周长公式的代入计算。
【巩固练习】
1.完成课本第56页练习十二第7、10题。
【课堂小结】
【课后作业】
1.教材第56~57页练习十二第8~9,11~13题。