网站导航
老地方 > 百科 > 教学教案 > 正文

两位数乘两位数教学设计

2025/09/06教学教案

老地方整理的两位数乘两位数教学设计(精选5篇),希望这些优秀内容,能够帮助到大家。

两位数乘两位数教学设计 篇1

一、教学目标:

1.知识与技能目标:

(1)、进行两位数乘两位数的估算、计算、巧算的巩固练习。

(2)、通过引导,得出十位乘积等于个位乘积的两位数乘两位数的对称算式的乘积相等,并理解掌握此结论。

2.过程与方法目标:学生通过观察、猜想、验证、得出结论、提出质疑、完善结论,上孩子们经历一个完整的过程,体验到探究的乐趣,感受数学的魅力。

3.情感态度和价值观目标:学生在自主探究解决问题的过程中,体验成功的喜悦或失败的教训,体会数学在日常生活中的应用价值。

二、教学重难点

教学重点:让孩子们学会观察、学会思考、敢于质疑,培养探究意识。

教学难点:通过引导,得出十位乘积等于个位乘积的两位数乘两位数的对称算式的乘积相等,并理解掌握此结论。

三、教学方法

启发诱导法、讲授法、探究法

四、学习方法

练习法、探究法、小组交流法、观察法

五、教学过程:

(一)引入新课

师:同学们,今天的数学课,我们先从画画开始!

(老师在黑板上画出对称图形的一半)

师:如果老师画的是整个图形的一半,谁愿意帮老师画出图形的另一半?

(让学生补充完整)

师:同学们,这位同学画的对吗?是的,图形当中有这样的对称现象!其实,在我们的语言当中也有这样的对称现象。

(老师点击屏幕,出现——好人)

师:大家想象着:如果在好人的后面也存在着那么一条对称轴的`话,根据读音对称应该是:(大家一块说)人好。(点击第二个)我爱你——你爱我

蓝天——天蓝,喜欢我——我欢喜,老师希望我们整节课都欢欢喜喜!好,上课!

(二)新课教学

同学们,你们知道吗,在我们学过的两位数乘两位数中也有这样的对称现象,我们今天就来复习两位数乘两位数(板书课题),让老师随手写几个两位数乘两位数的算式,好不好?

(老师出示21×36、41×28、36×42、96×46),老师写了几个算式,想一想,如果在这几个算式的后面也存在着一条对称轴,和它们对称的算式是什么?(提问)可见,在两位数乘两位数中,还真的有这样的对称现象,是不是?是!可是,老师觉得,我们就这样写出几个对称算式,也并没有什么了不起,如果我们能够发现,这每一组对称算式之间的一些秘密,那是不是就更棒了?如果我让你们去研究,那你们会试着研究什么问题呢?或者说,你们会有些什么猜想呢?有没有?你们有没有觉得这两个算式之间会有什么联系呢?

【设计意图:课始,老师利用对称算式引入,既使新知保持一种神秘感,又能让学生积极主动地投入学习活动之中。】

学生猜想:每组两对称算式的乘积是否相等?(老师复述)如果让你去研究,你就会研究它们的积是不是一样的,对不对?哦,我觉得这是个有价值的问题,我们可以去研究!

哎,我想问一问同学们,你们学过估算吗?对于这位同学提出的问题,我们可以先用估算来试试看!

生1:第一组算式,可以把21看作20,36×20=720;把63看作60,12×60=720,两道算式的得数相等。

生2:如果把21看作20、36看作40,20×40=800;把63看作60、12看作10,60×10=600,两道算式的得数不相等。

生3:我想把每个数都往小了估:如果把21看作20、36看作30,20×30=600;把63看作60、12看作10,60×10=600,两道算式的得数相等。

师:奇怪了!用估算方法算出来的每组两道算式的积有时相等,有时却不相等。那么,用估算方法能否判断每组算式的积是否相等呢?(不能)那可以用什么方法来判断呢?

生:笔算。

那同学们还等什么,拿出你手中的笔和纸,选择其中的一组,算一算,好吗?(学生练习)算好的。可以坐直,心里已经有结论的,我们先把笑藏在心里。

看到同学们都算的这样认真,我心里非常感动,同学们,我们只有准确的计算,才能得到正确的结论。

(学生交流计算结果)那通过我们的计算,你们能得出什么结论?

(如果孩子们得不出结论,让提出猜想的孩子复述他的猜想)

(学生得出结论)对称算式的乘积是相等的!(电脑呈现结论):

两位数乘两位数,两个“对称算式”的乘积相等。

(老师反问)同学们现在都相信这个结论吗?相信吗?我再问一问,有没有人怀疑这个结论的?要不,老师再写一个试一试,好不好?(老师又写了一个算式62×39),孩子们写出了对称算式,并通过计算,得出结论依然正确。

老师:现在还有没有怀疑的?看来同学们对这个结论已经深信不疑了。像刚才那样通过几个例子得出结论的方法叫做“不完全归纳法。”

(老师板书)对于“不完全归纳法”,有一个非常美丽的故事:那就是华罗庚爷爷讲给他的中学生听的,今天我也想把这个故事将给大家听,好不好?听完这个故事,我们再来说一说这个结论你是否相信,好吗?

故事是这样的:有一个主人买回了一只公鸡,第一天,主人给公鸡为了一把大米,第二天,主人仍然给公鸡为了一把大米,到了第三天,主人依旧给公鸡为一把大米,主人每天都给公鸡一把大米,连续给了九十九天,公鸡每天都会从主人那儿得到一把大米,此时,公鸡想:我每天都会从主人那儿得到一把大米,可是结果却不在美丽,到了第一百天,家里来了客人,公鸡没有再得到那把大米,而是被主人杀了。

好了,同学们,公鸡通过九十九天的得到的结论居然是错误的,是的,不完全归纳法,有时能得到正确的结论,而有时得到的结论却是错误的,后来人们把不完全归纳法得到错误结论的那一种情况戏称为“公鸡归纳法”。

师:好了,现在我想问一问大家:你们对这个结论还深信不疑的请坐直,有怀疑的请举手?

(大部分孩子都举手)怎么现在个个都怀疑了?为什么都怀疑了?如果你怀疑了,请说出你的理由!

(一个孩子举例说明14×16不等于61×41)

师:同学们,某某某不仅提出了质疑,而且他还在举例子,如果他举得例子是特殊的。你们试一试,看能不能找到一个反例!(同学们拿出笔试着举例)同学们,你们找到反例了吗?其实。我们只要找到一个反例,是不是就可以推翻刚才的结论,哎呀,我看到同学们兴奋地眼神了,如果你真找到反例了,你可以先和你的同桌交流交流了!我看到每个人都在交流,我让几个同学来和大家分享一下!

提问:(一个孩子举例)46×61不等于16×64。

师:我们都没有计算,只有他在计算,我想问一问大家,如果看到这组对称算式,你能否判断他们的乘积是否相等呢?你看的出吗?

我看到已经有同学举起了智慧的手!

(提问)这位同学的发言有值得我们学习的地方,他想到了估算,46×61他把这两个数都往小里估,把46估成40,61估成60,结果是2400,而16×64,把它们都往大里估,把16估成20,把64估成70,结果是1400,因为40×60=2400,20×70=1400显然这里不是等号,而是一个大于号,好了同学们,我知道大家很多同学都找到了反例,但是我们知道只需要一个反例,就可以说明这个结论是有问题的,那我现在问一问大家,你们失望吗?费了那么大劲找到的结论居然是错误的,什么不失望,为什么不失望?是的,我们并不失望,因为我们最起码通过自己的努力,证明了这个结论是有问题的!哎,我想现在有些同学的心里肯定有这样的疑问;为什么老师写的算式都符合这个规律,而同学们写的算式却不符合这个规律呢?难道老师写的算式里隐藏着什么秘密吗?有吗?

(小组之间进行讨论)我发现一些同学已经有想法了,难道老师写的算式里真有一些秘密呀?(学生交流发现的秘密)这位同学说:老师写的算式都符合十位上的数乘十位上的数等于个位上的数乘个位上的数,真的是这样吗?(老师同学一块验证)

师:那大家既然已经发现了这个秘密,那你们觉得我们这个结论该怎么改才能完善?(学生补充,老师总结)

得出结论:十位乘积等于个位乘积的两位数乘两位数的对称算式的乘积相等。

【设计意图:在“找到规律——怀疑规律——验证规律——否定规律——完善规律”过程中,学生不断肯定与否定自己的想法,不再轻信别人口中甚至于书中的答案,整个课堂充满了思辨的气息。学生学到的不仅仅是数学知识,更培养了有益于一生的思维品质;不仅激发了学生的探究欲望,而且培养了思维的灵活性。】

师:现在大家对于这个结论,你们怀疑吗?如果还有怀疑,怎么办?大家商量商量,再举例验证。

……

【设计意图:在这一过程中,老师的一个反问,又一次激发了学生的探索欲,让学生对不同的方法进行思考、交流。长此以往,数学的奥妙、数学的美就会深深扎根于学生的心里,学生怎会不喜欢学习数学呢?】

好了,同学们,思考是美丽的,看到同学们都能认真的思考。我很欣慰!我想,同学们心里可能都在想:这个结论到底正确与否?为什么会是这样?在乘法中怎么会有这么有趣的现象?在除法中、加法中、减法中是不是也有一些有趣的现象等待我们去发现?还有多少问题等待我们去探索、去研究,希望同学们在以后的数学学习中,都能带着这种精神,真正走进我们的数学世界!

两位数乘两位数教学设计 篇2

两位数乘两位数教学设计

作为一位优秀的人民教师,就有可能用到教学设计,教学设计是一个系统设计并实现学习目标的过程,它遵循学习效果最优的原则吗,是课件开发质量高低的关键所在。那么什么样的教学设计才是好的呢?以下是小编为大家整理的两位数乘两位数教学设计,希望能够帮助到大家。

两位数乘两位数教学设计 篇3

一、教学内容

人教版《义务教育课程标准实验教科书数学》三年级下册P65两位数乘两位数(进位)。

二、教学准备

多媒体课件、学习评价卡

三、教学目标与策略选择

在两位数乘两位数(不进位)计算中,学生已经理解了笔算的算理,知道乘的顺序及积的书写位置,因此,本节课主要利用学生已有的认知经验进行迁移,让学生自主建构两位数乘两位数(进位)的计算过程。在认真分析教材,深入了解学生的实际认知水平后,我将本节课的教学目标定位如下:

⑴结合讲成语故事这一富有趣味性的情境,体会两位数乘两位数(进位)的计算是伴随着解决问题而产生的;

⑵运用已有经验对问题情境进行探索,得出自己计算两位数乘两位数(进位)的方法,通过与同伴的交流,体验计算方法的多样化,并通过比较,完善自己的方法;

⑶经历两位数乘两位数(进位)的计算过程,掌握笔算乘法的方法;

⑷在故事情节中渗透德育,让学生懂得做任何事情都要持之以恒、专心致志。

由“好的服装=好的布料+好的式样+好的工艺”联想到“好的教学效果=好的教材内容+好的呈现形式+好的教学方法”,在本节课的设计中,我尝试从以下几个方面进行探索:

1、创造自己的“吸引子”,先声夺人。孩子是听故事长大的。本节课我由一个源于围棋的.成语故事引入,巧妙地将要解决的数学问题融于其中,引发学生愉快、主动地去探究它。

2、经历发现知识的过程。授人以鱼不如授之以渔场,课堂上我给学生提供了充分积极思考、合作交流的渔场,让他们在交流中不断地反思自我、完善自我。

3、注重过程评价,使学生在学习数学的过程中通过正确的评价,不断调整自我。纸上得来终觉浅,绝知此事要躬行,心中悟出始知深。本节课结束时,我给每个学生发一张评价卡,让学生简单反思自己本节课中所学的知识和情感体验,树立学好数学的信心。

4、教学流程设计及意图

教 学 流 程 设 计 意 图

一、引入

1、(出示卡片)专心致志

师:大家知道成语“专心致志”是什么意思吗?关于“专心致志”这则成语的来历还有一个小故事呢!

2、(电脑呈现下围棋画面)教师讲成语故事——专心致志。

师:大约战国初期,有位名叫弈秋的人特别喜欢下围棋。由于棋术高明,当时有很多家长把自己的孩子送去跟他学棋。其中有两个孩子特别聪明,一个六岁,已经会计算棋盘的总交叉点数,听老师讲棋时注意力非常集中,秋老师给他取名叫弈实;另一个孩子八岁,志向远大,决心要成为象秋老师一样的“大国手”,秋老师给他取名叫弈虚。开始讲课时,实和虚都能够认真地听讲,掌握了围棋的基本知识,学会了下棋的基本着法。一段时间后,弈虚因为水平比弈实高就觉得自己很了不起,小尾巴翘了起来,听讲的时候不用心,心里想着会飞来鸿鹄,自己可以拿弓箭把它射下来。不久,弈实的水平大大地超过了弈虚。

师:同学们,听完这个故事,你有什么想对大家说的吗?

生:下围棋时要专心,要不然就学不到真本领。

师:是啊,这个故事告诉我们干任何事情都要持之以恒、专心致志。

3、提出问题

师:同学们,弈实六岁时就已经会计算棋盘的总交叉点数,

那大家会计算吗?

(电脑呈现棋盘图,使学生了解到:围棋的棋盘面由纵横19道线交叉而成。)

棋盘上一共有多少个交叉点?

请学生说一说用什么方法解决这个问题,从而列出算式:

19×19

4、猜一猜:

⑴学生先猜一猜大约有多少个交叉点,并说一说你是怎样猜测的?

生:因为19≈20 20×20=400 所以大约有400个。

⑵想一想有什么方法能说明你猜测的数较正确?学生说出需要计算19×19=?

二、展开

1、独立思考,尝试解决问题

师:独立思考2分钟,你能想出几种方法计算19×19=?

2、梳理思路,小组合作交流

师:刚才很多同学不止用一种方法计算出了结果,接下来,请把你的想法和小组同学交流一下,在交流中有两个要求:⑴请你注意听小组内每位同学的意见、方法;⑵小组长每人发一张活动记录卡,请你边听边记下你们小组的活动情况。下面开始交流。

3、整理成果,全班汇报

⑴各小组长派代表将自己组的研究成果写在黑板上。

⑵小组代表说说他们的想法,其他小组可以补充。

①我们组的方法是:19×10=190 19×9=171 190﹢171=361

②19+19+…+19=361(19个19相加)

③我们组是把19×19看成20×19,20×19=380,再从380中减去19,380-19=361

④列竖式: 1 9

×1 9

1 7 1

1 9

3 6 1

⑤我们组也是用竖式计算,但结果不同。

1 9

×1 9

9 1

1 9

2 7 1

(揭示矛盾,突破“进位”这一教学难点。)

4、反思各种计算方法。

⑴教师提问:还有不同算法吗?那我们先来看这两个竖式计算:大家觉得他们的方法对吗?你对他们的方法有什么疑问吗?

①学生当“小记者”对用竖式计算组的同学进行现场采访,重点讲清“进位8”。

②师:同学们,“智慧宝宝”刚才也听到了大家精彩的发言,我了奖励大家,下面他要给大家讲个故事,想听吗?(电脑随录音逐一动态显示画面)

附:录音内容

数字妈妈有一对非常可爱的双包胎姐妹。有一天,数字姐姐19来到草地上,看到美丽的大自然,不由得坐下来欣赏起来,这时,数字妹妹19也来到这里,也被这景色吸引住了,她想坐下来和姐姐一起欣赏,可是究竟坐哪儿呢?姐姐看出了她的心思,就提醒她说:“我的1是十位,9是个位。”妹妹高兴地说:“噢,我知道了,我们应相同数位对齐。”突然,9和9说话了,“对不起,我们坐不下了。我们相乘满十了,要向前进8。”她们的前一位友好地收下了各自的新朋友。

学生主动学习,肯定来自于内部需求;如果没有这个需求,学生不会无缘无故地进行主体参与。因此,课堂伊始,我先创设讲成语故事这一情境吸引学生,然后从故事中引出需要解决的问题,使自主探究变成学生的一种需求。这样,在短时间内就将学生的注意引内容,让他全身心地走进数学的“门槛”。

学生间出现了不同的解题策略,在独立思考到达一定的程度时,教师教给学生必需的合作技能,接着,小组内每一个同学讲述了自己的解题方法,并对其他同学的解法充分发表自己的看法。通过这个过程,培养学生数学交流的能力,体验算法多样化,并在交流中学会倾听,学会换位思

学生当“小记者”采访用竖式计算的小组,向他们提出自己还不清楚的问题,这样就把单向的言说,变成了多向的对话。在交流中,学生不仅理解了算理,也解决“进位”这个教学难点。

“数字姐妹赏春”这一环节的设计,把数字拟人化,更拉近了学生与数学知识的距离,他们在静心聆听故事中小数字对话的同时,使知识进一步得到了巩固,而且不容易忘却。

两位数乘两位数(进位)笔算乘法教学反思、本节课是教学小学数学三年级下册课本65页例题2的笔算乘法,重点讲解19乘19的竖式,让学生掌握两位数乘两位数的笔算乘法的方法,进位的乘法计算格式。

从本节课看学生参与积极,学习的兴趣较浓。由于学生在二年级时学习了多位数乘以位数,本学期前一节课学习的两位数乘两位数不进位乘法,有了这个基础。因此,本节课我就放手让学生自己去尝试算一算,说一说,想通过让学生动脑思考、计算归纳两位数乘两位数的计算方法。在让学生计算“19×19”时,我是有意识的安排三个学生到黑板算(典型算法),让学生观察讨论,找到正确的计算方法,这样就突破了“进位”这一教学难点。

教学完这个例题后,我出了3题填一填,分层练习,学生填完后并说出计算的方法,目的让学生在计算的过程中去感悟,归纳出两位数乘两位数的笔算方法。学生都能填得出,但从学生的课后作业看,结果了现有部分学生对笔算方法不熟,尤其是在做第二层计算时就乱写了,例如:

4 5 6 3

× 3 4 × 5 2

———— —————

1 8 0 1 2 6

2 7 3 5

—————— —————

4 5 0 4 7 6

第一题学生当乘到十位上的数时,却是用第一个因数的个位加上进位的数2得7,再用5-3得2。

第二题是用十位上的数和个位相乘后,再用进位的数和个位相乘。这些学生为什么会出现这样的错误,我真不明白。

课后对这堂课进行反思,我想如果在讲完例1后,再叫几名学习没那么好的同学讲述一下笔算顺序,然后出一组改错题组织学生集体讨论,总结出笔算方法,让学生在讨论、口述的过程中对笔算乘法的算理有更清楚的认识,从而掌握笔算方法。学生在巩固训练中失误可能会更少,教学效果可能会更好。

两位数乘两位数教学设计 篇4

教学内容:冀教版《数学》三年级下册第 38 、 39 页

教学目标:

1、结合彩笔问题,经历用已有知识解决问题,学习两位数乘两位数(不进位)乘法的计算方法的过程。

2、会笔算两位数乘两位数(不进位)的乘法。

3、在与他人交流各自算法的过程中,体验算法多样化,提高学习数学趣。

培养学生的分析、综合能力。

教学准备:课件

教学过程:

教学环节

设计意图

教学预设

一、情境引入

同学们,新的'学期开始了,动物学校的同学们很快也开学了,看,这是谁?兔博士来了,它要奖励假期作业出色的同学,正为它们购买奖品呢。

二、创设情境、探究新知.

1.创设情境,引出例1呢?你能得到哪些数学信息?提出什么问题?怎么列式?怎样计算12盒彩笔多少枝呢?

2、自主探索。

小组同学合作研讨:12盒有多少枝?怎样算?鼓励学生先独立思考,在在小组里交流。

3、交流算法。

让学生各抒己见,展示自己的算法,并说清算理。

鼓励学生说出自己的个性化算法

实物投影展示不同算法。

刚才大家说得方法都很好,今天我们重点要学习竖式计算的方法,我刚才就看到有些同学用竖式计算的,谁来说说你是怎么想的?

3、竖式计算

在交流的基础上重点解决用竖式计算的方法,

重点解决大头蛙提出地问题。使学生明确:乘数12十位上的“1”乘24个位上的“4”得4

个十,所以4要写在积的十位上。

多找几位学生说计算方法,明确算理。

三、尝试应用

兔博士还买了些东西,请同学们帮忙算算每种商品需要多少钱,你们愿意帮忙吗?

出示表格。(课件)

四、综合运用

1、练一练第1题。兔博士买好了奖品,准备召开表彰会了。

学生表彰会在学校礼堂召开,每排22个座位,有23排。500位同学够吗?独立思考解答,再交流。

2、表彰会快开始了,可是还有3位同学没到,原来它们被难题难住了,同学们快帮帮它们。

3、刚才大家表现都很出色,现在老师给大家带来一些人类得好朋友。你认识它们吗?出示益鸟图片。同学们手中有它们吃害虫的资料,请你帮忙算一算,它们21天能吃多少害虫?

五、布置作业

聪明屋:用11去乘两位数,看看你能发现了什么规律?

创设情境,吸引学生的注意力和学习兴趣。

通过情境引入新知识得学习,贴近学生生活。

培养学生独立解决问题的能力和合作精神。

通过交流讨论,丰富了学生解决问题的不同方法。让学生亲身经历探索两位数乘法计算方法的过程。

明确算理,使学生计算时能掌握住方法。

通过对练习的精心

设计,提高学生学习的兴趣。使学生从不同的角度加深对算理的认识,激发了学习兴趣,提高了计算能力,注意了培养学生认真计算、书写工整的良好学习习惯.

两盒彩笔多少枝?

十盒彩笔多少枝?

12盒彩笔多少枝?

24×12

⑴24×10=240(枝 )

24×2=48(枝)

240+48=288(枝)

⑵20×12=240(枝)

4×12=48(枝)

240+48=288(枝)

⑶有的用竖式计算。

为什么“4”要写在十位上呢 ?

杜鹃每天吃14只松毛虫;

猫头鹰每天吃12只田鼠;

燕子每天吃24只害虫;

啄木鸟每天吃23只害虫;

喜鹊每天吃11只害虫;

给学生创造个性发展的机会,丰富课程资源。

两位数乘两位数教学设计 篇5

【课堂教学设计说明】

本节课是在学习了两位数乘一位数的乘法和两位数乘整十数的乘法基础上学习今天的新知识。导入 新课正是旧中引新,为讲授计算方法和算理做好知识上和心理上的准备。

讲授新课时,利用迁移的原理,在教师引导下,使学生一步一步地加深对算理和算法的认识和理解,从而很轻松地获得了新知识。

通过对练习的精心设计,使学生从不同的角度加深对算法及算理的认识,激发了学习兴趣,提高了计算能力,注意了培养学生认真计算、书写工整的良好学习习惯。

【设计理念】

重视知识间的“纵向”联系,有效把握知识的前后联系,提高教学设计与实施效果;尊重学生已有的知识基础与生活经验,可以提高教学的针对性和有效性。引导学生经历探究“两位数乘两位数”算法的过程,培养学生的数感,发展学生的比较、概括及抽象能力。

【教材与学情分析】

“两位数乘两位数”是青岛版五年制教材三年级上册的内容,是两位数乘一位数的'继续,是学习两位数乘两位数的起始,是三位数乘两位数的基础,所以这部分内容起到了承上启下的作用。

学生已经学过了两位数乘一位数和两位数乘整十数,学生完全有可能利用已有的知识经验计算出得数,老师课上需要做的只是引导学生回忆、帮助学生规范、把认识加以提升。学生只要学会了这部分内容,三位数乘两位数的时候完全可以迁移过去。

教学内容:

青岛版五年制小学数学三年级上册第63~65页。

教学目标:

1.经历探索两位数乘两位数(不进位)口算和笔算方法的过程,理解算理,掌握算法。

2.通过小组合作和交流,感受计算两位数乘两位数(不进位)方法的多样化,培养数感和数学思维能力、交流能力及合作意识。

3.在探索算法和解决问题的过程中,感受数学与生活的联系,增强自主探索的意识,提高交流合作的能力,获得成功的体验,树立学习的信心。

教学重点:

探索两位数乘两位数(不进位)的算法,理解算理。

教学难点:

理解“用十位去乘”时得数的写法及算理。

教学过程:

一、引出问题

课件出示信息窗,请学生观察图,找数学信息(注意引导学生分类找信息,找相关的信息),并将每组相关信息予以板书,然后让学生根据每组信息提出问题。

(学生可能找到的相关信息:这条街上有23根灯柱,每根灯柱上有12盏灯。可能提出的问题:一共有多少盏灯?)

二、理解算理,探索算法

1.列式

⑴根据信息和问题列式,并简单说一说列式的根据。(板书:23×12)

⑵找该算式和以前学过的乘法算式有什么不同?(使学生明确知识的发展点。)

⑶板书课题:两位数乘两位数

2.试算

⑴请学生动脑思考能不能用以前学过的方法计算出得数,并把算法写到练习本上,遇到困难时,可以和小组同学交流一下。(引导学生寻找知识的生长点)

⑵师巡视指导。

⑶交流算法。

学生可能会出现的算法:

A:23×10=230

23×2=46

230+46=276

B:20×12=240

3×12=36

240+36=276

(引导学生明确:两位同学都是把其中一个因数拆分之后,转化成了以前学过的算式。)

⑷小结:同学们真善于动脑筋,两位数乘两位数不会算,就想到了把它转化成我们学过的两位数乘一位数和两位数乘整十数。看来遇到新的问题的时候,想办法把它转化成我们以前学过的旧知识,的确是一个很好的学习方法。

3.笔算

⑴请学生试着用竖式计算23×12,遇到困难可以和小组的同学一起商量。

⑵学生试做,师巡视指导。

⑶展示交流。

学生可能会出现的算法:

A: 2 3

× 1 2

2 7 6

(引导学生明确:这样列竖式没法清晰地看出计算过程)

B: 2 3 2 3 2 3 0

× 2 ×1 0 + 4 6

4 6 2 3 0 2 7 6

(和刚才的那个竖式比,这种做法确实清晰地看出了计算过程,但也有点麻烦。)

C: 2 3

×1 2

4 6

+2 3 0

2 7 6

(请学生对比评价B和C两种算法,C方法既能看出计算过程,也比较简单。)

D: 2 3

×1 2

4 6

2 3

2 7 6

(请学生对比评价C和D两种算法,D方法也能看出计算过程,比C更简单。)

4.明算理

引导学生分别说一说46是怎么来的?表示什么?23是怎么来的?表示什么?尤其要明确23写在百位和十位上就是表示23个十,也就是230。

5.规范书写

师生共同梳理计算的过程。

2 3

×1 2

师:先用个位上的2和23相乘。(板书)

2 3

↖↑

×1 2

4 6

师:再用十位上的1和23相乘。一三得三,3写在哪里?为什么?

师:在十位下面写3就表示3个十了。一二得二,2写在哪?为什么?

2 3

↑↗

×1 2

4 6

2 3

2 7 6

师:竖式中的46是怎么来的?23实际上是多少?它是怎么来的?

(板书:23×2和23×10)

2 3

↖↑

×1 2

4 6——23×2

2 3 ——23×10

2 7 6

6.练习

独立计算21×43,集体订正时说一说计算过程。

三、巩固练习

1.根据竖式写得数。

师:你是从竖式中的哪一部分看出来的?

2.你能很快判断出对错吗?

42×21=126(出示横式,不出竖式)

(学生可能根据个位上的数进行判断,也可能利用估算进行判断)

找错因,明算理。(出示竖式)

四、总结

师:你觉得在用竖式计算两位数乘两位数时应注意什么?

师:是呀,在用个位上的数去乘时,得数的末位要和个位对齐,用十位上的数去乘时,得数的末位就要和十位对齐。