网站导航
老地方 > 百科 > 教学教案 > 正文

《比的应用》说课稿

2025/09/22教学教案

老地方整理的《比的应用》说课稿(精选4篇),希望这些优秀内容,能够帮助到大家。

《比的应用》说课稿 篇1

教学目标:

1、理解比例的意义,认识比例各部分名称;能利用观察—猜想—验证的方法得出比例的基本性质。

2、能根据比例的意义和基本性质,正确判断两个比能否组成比例。

3、使学生在自主探究、合作交流的活动中,进一步体验数学学习的乐趣。

教学重点:

理解比例的意义和基本性质,能正确判断两个比能否组成比例。

教学难点

自主探究比例的基本性质。

教学过程

一、导入

1、谈话

师:同学们,上学期我们学过有关比的知识,谁能说说学过比的哪些知识?

生1:比的意义。

生2:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

生3:比的前项除以后项,所得的商就是比值。

(评析:简短的几句谈话,引起了学生对已有知识的回忆,让学生“温故”而“启新”。)

二、合作探究,学习新知

1、比例的意义

师:今天我们继续学习有关比的知识。昨天大家预习了,谁来说说今天学习什么?

生:比例?(书:课题比例)

师:看到这个课题你想知道什么?

生:什么叫比例呢?

生:(书)表示两个比相等的式子叫做比例。

师:你怎样理解这句话的意思?可以举例说明。(如果学生举不出例子,我就从比例的意义上去引导,表示两个比相等,你能写出两个比吗?怎样知道这两个比是否相等呢?指着学生举的例子说,像这样的两个比相等的式子就是比例)

师:你也能举出一个这样的`例子,对吗?请你举出一个这样的例子,再给同桌说说为什么能组成比例?

(老师巡视时可以提示学生有的孩子写出了小数、分数形式的比例很好。生汇报)师板书。

师:通过以上练习,你认为这句话中哪些词最重要?为什么?

生1:两个比,不是一个比

生2:相等,这个比必须相等

生3:式子,不是两个等式是式子。

师:(投影出示)请你利用比例的意义,判断下面的比能否组成比例?

(1)0、8:0、3和40:15

(2)2/5:1/5和0、8:0、4

(3)8:2和15/2:15

(4)3/18和4/24

(学生独立判断,师巡视指导,然后汇报)

师:先说能否组成比例,再说明理由,生:0、8:0、3和40:15能组成比例,因为0、8:0、3和40:15的比值都是8/3,所以0、8:0、3和40:15能组成比例。

同理教学:(2)2/5:1/5和0、8:0、4

(3)8:2和15/2:15不能组成比例,因为8:2和15/2:15的比值不相等,所以8:2和15/2:15不能组成比例。

师:怎样改能使它组成比例呢?

生:4:8=15/2:15或8:2=15:15/4

同理教学(4)3/18和4/24

师:像3/18和4/24是比例吗?

师:分数形式的比例怎么读?你能把这个(学生写的整数比例)改写成分数形式吗?请读一读?

2、认识比例各部分的名称。

师:我们在学比的时候知道了比有前项和后项,而组成比例的这些数也有自己的名字。谁能来说一说?

生:组成比例的四个数叫做比例的项,两端的两项叫做比例的外项,中间的两项叫做比例的内项。(师板书)

师:请你指出在这个比例中(16:2=32:4),哪是它的内项?哪是它的外项?

生:2和32是它的内项,16和4是它的外项。

师:请同学们快速抢答老师指的数是比例的外向还是内项。

生:(激烈抢答):外项

师:同学们反应真快,分数的形式中哪些是比例的项呢?

生:2和32是内项,16和4是外项。

师:老师指分数比例学生抢答。

3、探索比例的基本性质。

师:同学们学得真不错,敢不敢和老师来个比赛?

生:(兴趣高涨):敢!

师:好,请两位同学们各说一个比,我们共同来判断能否组成比例,看谁判断的快?

师:谁来。

生1:4:5,生2:8:9不能组成比例。

生:对。

师:服气吗?不服气咱们再来一次,生1:1、2:1、8,生2:3:5

师:不能。对吗?

生:对。

师:老师又赢了,这回服气了吧。(学生点头)

师:其实你们表现的很不错,只不过老师是用了另一种方法,才能做得又对又快,想知道是什么方法吗?

生:想。

师:其实秘密就藏在比例的.两个内项和两个外项之中,就请你以16:2和32:4为例,研究一下,试试能不能发现这个秘密!老师给你们两个温馨提示:(课件出示:温馨提示:

1、可以通过观察、算一算的方法进行研究。

2、你能得出什么结论?)

师:现在请将你的发现在小组里交流一下,看看大家是否同意。

(学生讨论)

师:哪个小组愿意将你们的发现与大家分享?

生1:我们组发现16和32是倍数关系,2和4也是倍数关系,所以我们想,在比例里,一个外项和一个内项之间都存在倍数关系。

师:有道理,不错,还有其他发现吗?

生2:我们组发现16×4=6432×2=64,也就是两个外项的积等于两个内项的积。

师:你能把这个计算过程写在黑板上吗?(学生板书:16×4=64)

师:这是两个外项的积,(师板书:两个外项的积)

(学生板书:16×4=64)

师:这是两个内项的积,(师板书:两个内项的积)

师:你的意思是:两个外项的积等于两个内项的积(师板书:=)是吗?

师:其他组的同学同意他们这个结论吗?

生:同意。

(以上环节,灵活掌握,如果有的学生能直接用比例的基本性质判断,就直接问:你怎么算得那么快?生:我用两个外项的积=两个内项的积,判断它们能组成比例。是不是所有的比例两个外项的积=两个内项的积呢?怎么验证?)

师:真的所有的比例都是这样吗?怎么验证?

生:可以多举几个例子看看。

师:这是个好建议,那快点行动吧。(学生独立验证)

生:我同意,因为我用的是2:16=4:32来验证,我发现32×2=64,16×4=64、

生:我也同意,我用的是10:5=2:1,来验证,我发现10×1=10,2×5=10、

师:有没有同学举得例子不符合这个结论呢?那也就是说,所有的比例都是两个外项的积等于两个内项的积。其实这也正是比例的基本性质。同学们太厉害了。能通过举例来验证自己的发现。

4、比和比例的区别

师:我们以前学习的比,和今天学习的比例有什么不同呢?请六人小组说一说。(师巡视)

师:哪一组的代表来说一说。

生:比和比例的意义不同?两个数相除又叫做两个数的比。表示两个比相等的式子叫做比例。

生:比和比例形式不同。比是一个比,比例是两个比。

生:性质不同。比的前项和后项同时乘以或除以同一个数(0除外)比值不变。在比例里,两外项的积等于两内项的积。

5、总结:今天学习了什么?学生看着板书说,请同学们默记两遍。

三、巩固练习

1、下面每组比能组成比例吗?

(1)6:3和8:5(2)20:5和1:4

(3)3/4:1/8和18:3(4)18:12和30:20

生1:第(1)个不能组成比例,因为6×5=30,3×8=24,不相等。

生2:第(2)个不能组成比例,因为20×4=100,5×1=5,不相等。

师:怎样改一下使它们能组成比例?

生3:把20:5改成5:20,这样5×4=20,20×1=20,能组成比例。

生4:还可以把1:4改成4:1,也能组成比例。

生5:第(3)个可以组成比例,因为3/4×3=1/8×18。

生6:第(4)个可以组成比例,因为18×20=360,12×30=360。

师:看来要判断两个比能否组成比例,除了可以根据两个比的比值是否相等外,还可以根据比例的基本性质来进行判断。

2、填一填。

2:1=4:()1、4:2=():3

3/5:1/2=6:()5:()=():6

师:最后一题还有没有别的填法?

生1:5:(1)=(30):6

生2:5:(30)=(1):6

生3:5:(2)=(15):6

生4:5:(15)=(2):6

师:怎么会有这么多种不同的填法?

生:两个外项的积是30,根据比例的基本性质,只要两个内项的积也是30就可以了。

3、用2、8、5、20四个数组成比例。

师:你能用这四个数组成比例吗?

师:最多可以写出几种?怎样写能够做到既不重复也不遗漏?

生:2和20做外项,8和5做内项时有4种:

2:8=5:202:5=8:20

20:8=5:220:5=8:2

8和5做外项,2和20做内项时也有4种:

8:2=20:58:20=2:5

5:2=20:85:20=2:8

四、课堂总结

师:说一说,这节课你有哪些收获?

生1:知道了比例的意义。

生2:学习了比例的基本性质

生3:我知道了要判断两个比能否组成比例可以根据意义判断,也可以根据比例的基本性质判断。

师:这节课哪个地方给你留下的印象最深刻?

《比的应用》说课稿 篇2

教学目标:

1、知识与技能:认识比例,知道比例的的内项和外项,理解和掌握比例的基本性质,会判断两个比能否组成比例。

2、过程与方法:通过自主探究、合作交流、观察、比较,培养学生分析、比较、抽象和概括的能力,经历认识比例和比例的基本性质的过程。

3、情感态度与价值观:体会国旗中隐含的数学规律,丰富关于国旗的知识,培养学生爱国旗、爱祖国的情感。

教学重点:

理解比例的意义,探究比例的基本性质。

教学难点:

探究比例的基本性质和应用意义,会判断两个比能否组成比例。

教学过程:

一、创设情境,引入新课

同学们,五星红旗是中华人民共和国的象征。每当周一升国旗时,我们心中充满了对祖国的热爱和作为一个中国人的自豪。热爱国旗就是热爱祖国,国旗对我们这么重要,你们想不想更多地了解一些国旗的知识呢?

1、出示三幅场景图(见教材第40页主题图)

2、提问,你们知道每一幅图中国旗的长和宽是多少吗?(出示课件)

3谈话:在制作国旗的尺寸的过程中也存在有趣的比。同学们可以算一算这三幅国旗的长和宽之比,并求出比值。

4、汇报,教师依次出示

二、引导探究,明确意义

(一)比例的意义

(1)观察这三组数据,你有什么发现?

(2)看三组数据,能否从中选出两个比组成等式呢?

(3)学生汇报,教师任选其中的`板书

(4)师:肯定学生的回答后指出,像这样的等式我们还可以继续写下去。这样两个比相等,我们就可以说这两个比可以组成比例。(出示)这就是比例的意义也是我们今天所要学习的一个重要内容。

(5)引导学生再次理解意义并强调,两个比相等,并让学生说说什么是比例?

(6)试写比例的分数形式。

2、根据意义,判断比例

下面哪组中的两个比可以组成比例?把组成的比例写出来。

(1)学生独立完成。

(2)指名汇报。

(3)师:20:5和1:4为什么不能组成比例?那么你能想办法给20:5找个朋友组成比例吗?想一想,这样的朋友能找几个?你认为找到朋友的共同特点是什么?也就是说要符合什么条件?

小结后强调指出,判断两个比能否组成比例,关键是看它们的比值是否相等。

(二)比例的基本性质

师:我们知道比中两个数分别叫做比的.前项和后项。今天我们学习的比例中的四个数也有自己的名字,你们知道它们分别叫什么吗?(和学生介绍内项和外项)。

(1)写出一组比例,让学生指出各部分的名称。

(2)如果把比例写成分数的形式,你能找出它的内项和外项吗?

生独立指出比例的内项和外项。

1、活动探究总结性质

谈话:比例表示两个比相等的式子,就像除法有商不变的性质一样,比例也有它特有的性质,会是什么呢?我们可以怎样研究?

(1)请你试着写出一些比例:

(2)问题:观察比例式,两个外项与两个内项之间有什么关系?想想、写写、算算,看你有什么发现?(可以提示学生分别算出两个外项和两个内项的和,差,积,商,看看有没有一定的规律)

(3)学生探究,教师巡视,收集资源。

(4)探究:你发现了什么?怎么发现的?

(5)验证:有了这样的发现之后,你有什么问题呢?

(6)可以得出什么?(比例的性质)

(7)提问:如果把比例写成分数的形式,比例的基本性质会出现什么形式呢?

2、运用性质

(1)提问:判断比例是否成立,你是根据什么判断的?有几个方法?

(2)出示一些练习,判断哪一组中的两个比可以组成比例?

三、归纳总结,交流收获

本节课学习了什么?

《比的应用》说课稿 篇3

《比的应用》说课稿范文(通用13篇)

作为一位无私奉献的人民教师,通常需要用到说课稿来辅助教学,说课稿有助于学生理解并掌握系统的知识。那么什么样的说课稿才是好的呢?下面是小编为大家整理的《比的应用》说课稿范文,仅供参考,大家一起来看看吧。

《比的应用》说课稿 篇4

一、说教材

我说课的内容是九年义务教育人教版六年制小学数学第十一册第二单元52页例2和例3——比的应用,在本册教材中主要就是按比例分配。

之所以将例2和例3放在一节课,主要是为了形成知识的层次和渐进,以利于通过知识点的对比,让学生坚定对知识的感知结果。

按比例分配是把一个数量按照一定的比进行分配,它是在学生学习了“平均分”和“分数应用题”的基础上进行教学的延伸。教材是采用把比化为分数,用学生前面已学过的分数的知识来解答。这样安排学生容易接受,不仅加深了对分数应用题的理解,还有利于加强知识间的联系,为今后学习正反比例等知识打下基础。

二、说学生

六年级的学生在分析问题和综合运用知识方面具有一定的能力,而我班大部分学生思维活跃,能结合自己已有的知识去分析问题,学习新知识,具有一定的自学能力和实践操作能力。

三、说教学目标

1、使学生明确按比例分配是比的应用,又是“平均分”的发展,明确按比例分配的意义和作用。

2、让学生掌握按比例分配应用题的特征和解答方法,并能应用这一直是解决实际生活中的问题。

3、培养学生观察分析和动手操作以及自学能力,促进能力的发展。

在轰轰烈烈进行基础教育课程改革的今天,如何面向全体学生,使学生得到充分、自由、和谐、全面的发展是制定课堂教学目标的主导思想。因此,为此,依据《数学课程标准》,我制定了这堂课的以上三个教学目标。

四、说重难点

重点:按比例分配应用题的特征和解答方法

难点:让学生知道“把什么数量按什么比例”进行分配

按比例分配应用题具有典型的特征,理解并掌握了这种特征,就能正确地运用这一知识去解决实际问题。

而把什么数量按什么比例进行分配,则往往是很大一部分学生感觉比较困难的,因此将其作为难点。主要将采用“自学——比较——应用”的方式来突出重点,突破难点。

五、说教法和学法

本节课主要采用操作实践,复习引入,指导自学,分析比较,实际应用等教学法。

推广素质教育的主渠道在于我们的课堂教学,如何把学生由被动听变为主动参与,关键在于要打破传统的灌输式教学模式。因此,我们要树立起尊重学生,相信学生,放手让学生主动学习的观念。针对这种教学思想,本节课的教学,要注意以下几个问题:

首先要营造一个愉快、和谐、民主的课堂气氛。

应该通过老师的语言、动作、表情,传递给学生一种亲切、鼓励、信任的情感意识,形成和谐的课堂氛围,从而有效地引导学生主动学习,体现学生学习的主体地位。

其次是要调动学生学习的主动性,激发学习兴趣。采取的手段主要是让学生动手操作,初步感知。安排动手操作,促使学生多种感官的参与,在“平均分”的基础上进一步感知“按比例分配”的概念。

第三就是指导自学,培养自学能力。

让学生带着教师给出的问题边自学,边思考,达到学有所思,学有所获的目的,这样,可以做到既让学生学习,又让学生的能力得到培养。

第四就是重视应用,正所谓“学以致用”,这样既可以检验学生的学习情况,又可以巩固学生在本节课所学的知识,可谓一举两得。

六、教学程序

本课的教学程序共分为两个部分:

第一部分主要解决什么是按比例分配,采用分石子的实际操作法,让学生通过动手操作,从而感知,以加深学生对按比例分配的理解;第二部分主要解决怎么按比例分配的问题。

要让学生掌握按比例分配应用题的特征和解答方法,并能应用这一直是解决实际生活中的问题,就必须要首先让学生理解什么是“按比例分配”,而采用分石子的实际操作法,即结合农村学生的实际,又让学生通过动手操作来感知,既贯彻了新课程理念,又体现了学生学习的主体地位,更是为了实现教学目标,突出重点,突破难点。

第一部分

什么是“按比例分配”

操作感知,导入新课。

在实际情境中理解按比例分配【《数学课程标准》第21页】

以同方为单位分一分

(这样有利于培养学生的合作学习的能力)

(1)、按1:1把8颗石子分成两部分。

(2)、按2:1把8颗石子分成两部分。

通过动手操作,让学生感知第一种情况是“平均分”,而第二种情况不是“平均分”。说明在我们日常生活和工农业生产中,除了“平均分”以外,还常常要把一个数量按照一定的比来进行分配,除了第一种情况是“平均分”外,还有第二种情况,由此导入新课,“按比例分配”。

这样安排导入有利于学生把握知识的发展变化与延伸,从而激发学生学习兴趣。

第二部分

怎样按比例分配

(一)、复习

(1)、甲数是8,乙数是10,则甲数是乙数的(),甲数与乙数的比是():()

(2)、第52页出示复习题:一个农场计划在100公顷的地里播种60公顷小麦和40公顷玉米;小麦和玉米的播种面积各占这块地的几分之几?小麦和玉米播种面积的比是多少?

这样安排,目的是把握新旧知识和连接点,为分散难点起着积极的迁移作用。

(二)、自学

1、提出问题,让学生有目的的自学

先出示自学要求:这道题分配的是什么?按照什么来分配?播种小麦和玉米的面积比是3:2,表示播种小麦和总播种面积的比是几比几?播种的小麦占总播种面积的几分之几?玉米的面积与总播种面积的比是几比几?播种的玉米占总播种面积的几分之几?

老师引导学生尝试,让学生自学课本例2。其目的是让学生自己在课本中找出解决问题的方法。

2、学生小组自学,教师进行指导

小组自学是合作学习的`重要形式,它有利于培养学生的合作意识,这也是新课程要求的要培养学生的能力和品质之一。

3、学生汇报,师生共同解题

先检查自学情况,师生共同简略解决例2

然后让学生汇报:把谁按什么比例分配

4、自学例3

让学生在学习、理解了例2的基础上自然的过渡到例3,并运用例2的技能来解决例3,使学生实现知识和技能的迁移以及综合运用。

5、比较例2、例3

例2是把总面积100公顷按3:2进行分配,例3是把总棵树按3个班的人数所占比例进行分配。

这样做的目的是通过比较,让学生知道,按比例分配既可以是2个量比,还可以是3个或3个以上的量比。

(三)、练习

多层次训练,巩固新知识,形成技能。

练习是数学课堂教学一个重要环节,练习力求做到从易到难,由浅入深,有层次,有坡度,新旧知识融洽恰当,形成技能技巧,开拓思维,发展能力,达到练习的预期目的。

1、基础练习

某班男女学生人数的比是9:4,男生占全班人数的(),女生占全班人数的()。

这个练习用采分散难点,促使知识结构的内化。

2、对应性练习。

62页的“做一做”第1题

采用讲练结合的形式巩固所学知识,让学生在学习新知之后即时得到巩固。

3、综合性练习。

(1)甲、乙两数的平均数是50,甲和乙的比是7:3,甲、乙两数各是多少?

(2)一块长方形地周长120米,长和宽的比是3:1,它的长和宽各是多少米?

这种练习旨在加强对比,提高学生分析和综合运用知识的能力。

(四)、运用

混凝土,石子、沙和水泥的比是3:2:5,现在有20吨水泥,需要多少石子和沙才能生产出这种合格的混凝土?

有了基础知识,并不等于拥有了技能。只有在掌握了基本知识方法的同时,教师大力提供应用时空,让学生自主地运用“双基”去解决实际问题,才能使学生形成技能和对知识与方法的迁移应用能力,应用已有的知识与方法去解决全新而又生疏的实际问题,这一点对于创新能力和创新精神的培养非常重要。

(五)、全课总结

你学会了什么知识?掌握了哪些方法?

这样做既检验了效果,又体现了课堂教学的整体性,从而培养学生的概括和口头表达能力。