网站导航
老地方 > 百科 > 教学教案 > 正文

相遇问题教学设计

2025/09/30教学教案

老地方整理的相遇问题教学设计(精选5篇),希望这些优秀内容,能够帮助到大家。

相遇问题教学设计 篇1

【学习目标】

知识与技能:学会分析相遇问题的数量关系,掌握相遇问题求路程的解题方法。

过程与方法:模拟相遇问题中两个物体的运动过程,亲身体验知识形成的.过程。

【学习重点】

掌握相遇问题求路程的解题方法。

【学习难点】

分析相遇问题的数量关系,理解不同的方法解答。

【学习过程】

一、知识铺垫

小萍每分钟走65米,从家出发 6分钟可以到栈桥。小萍家到栈桥有多少米?

思考:用什么方法计算?根据什么 ?

导:今天,我们将在这个知识的基础上研究一种新的数学问题。(揭题:相遇问题)

二、探索新知

1、初步感知,理解题意

小萍和小明同时从家去栈桥,小萍每分钟走65米,小明每分钟走75米,经过6分钟两人在栈桥相遇。他们两家相距多少米?

思考:(1)从题中知道了什么信息?

(2)两道题有什么不同?

2、学生表演,加深理解

同时、相遇、相距(学生上台表演)

思考:小萍走了( )分钟?小明走了( )分钟?他们同时走了( )分钟?也就是从开始到相遇,经过了( )分钟?

(生汇报师补充完成线段图)

列式计算:

方法一: 方法二:

—————————— ——————————

—————————— ——————————

—————————— ——————————

答: ——————————。 答:——————————。

3、小组交流,探索方法

要求:①说说你是怎样列式的;

②说清楚算式里每一步算出的是什么;

③记住用手指指着你列的式子说。

4、集体交流

师小结两种方法。

5、看书质疑,提高认识

师:这样的题目,我们称为相遇问题,看书本P63,想一想有没有不明白的地方?

质疑:(65+75)×6中没有小括号,行吗?

三、巩固练习

1、小方和小丽同时从家出发,经过8分钟两人在少年宫相遇,小方每分钟走70米,小丽每分钟走60米。她们两家相距多少米?

2、两列火车分别从甲乙两地同时相对开出,5小时后相遇。甲车每小时行110千米,乙车每小时行100千米。甲乙两地间的路程是多少千米?

3、拓展练习

甲、乙两车同时从同一车站向相反方向开出,甲车每小时行70千米,乙车每小时行55千米,开出3小时,两车相距多少千米?

五、课堂总结

通过这节课的学习,你有什么收获?

课堂检测

1、两列火车分别从两站同时相向开出,甲车每小时行驶60千米,乙车每小时行驶70千米,经过5小时在途中相遇,两站相距多少千米?

2、张丽和李云同时从学校向相反方向回家,张丽每分钟走80米,李云每分钟走60米,经过10分钟,她们同时到家,她们两家相距多少米?

3、甲、乙两艘轮船同时从甲、乙两地相对开出,甲船每小时行驶25千米,乙船每小时行驶15千米,经过10小时相遇,甲、乙两地相距多少千米?

4、小青和小红同时从自己家走向学校,小青每分钟走60米,小红每分钟走65米,两人走了2分钟时还相距125米,她们两家相距多少米?

相遇问题教学设计 篇2

教学内容:

课本应用题例7及练一练

教学目标:

1、通过教学,引导学生认识“相遇问题(求其中的一个速度)”的特征,理解数量关系,并能解答求其中的一个速度问题的.应用题。

2、通过组织学生分组讨论,培养学生合作与交流的意识。

3、结合生活实例,培养学生收集信息、处理信息和解决实际问题的能力。

教学重点:

“求其中的一个速度问题”的特征和解题方法。

教学难点:

“求其中的一个速度问题”的特征和解题方法。

教学用具:

多媒体课件一套

教学过程:

一、激趣引入,复习旧知

今天小红打的去离家3600米的少年宫学习舞蹈,6分钟就到了少年宫,汽车每分钟行多少米?

学生口答列式:3600/6=600(米)。

复习“速度”、“时间”、“路程”三者之的数量关系。

(板书:速度=路程/时间)

一辆客车和一辆货车一小时共行115千米,其中一辆客车每小时行55千米,一辆货车每小时行多少千米?

二、揭示特征,化解难点

读读议议

出示:两地相距460米。小明和小红同时从两地出发,相对走来,经过5分钟相遇。小明每分钟走60米,小红每分钟走多少米?

提问:你知道相遇的时候,小明行了多少米?小红行了多少米?

如果只知道:两地相距460米。小明和小红同时从两地出发,相对走来,经过5分钟相遇。你能求出什么?

460/5=92(米)

三、解答例题,理清思路

1、尝试例7(稍做改动)。弄清数量关系,理清解题思路,掌握两种解法。

①将上题中“经过5分钟相遇。”改成“经过4分钟相遇。”,其余条件不变,仍然小红每分钟走多少米?”学生读题后尝试练习。

②评讲板演,理清解题思路,概括两种方法。

解法一:

分步计算:两人每分共行多少米?

460/4=115(米)

小红每分种走了多少米?

115-60=55米

综合算式:460/4-60

=115-60

=55(米)

解法二:

分步计算:相遇时小明行多少米?

60x4=240米

相遇时小红行多少米?

460-240=220米

小红每分行多少米?

220/4=55米

综合算式:(460-40x4)/4

=220/4

=55米

2、质疑小结,揭示课题。

①想一想,这两种解法有什么联系?

②概括“求其中的一个速度”的特征和解题方法。

③揭示课题。

四、深化理解,应用拓展

1、基本练习。

用两种方法完成练一练第1题

比一比哪一种方法简单一些?

2、变式练习

甲乙两台机床同时加工580个零件,经过10小时正好完成。甲机床每小时加工28个,乙机床每小时多少个?

五、课堂总结

今天这节课你有什么收获?

六、课堂作业

练一练第2、3、4、5

相遇问题教学设计 篇3

设计思路:

本课时是在学生学习〈〈义务教育课程标准验教科书〉〉五年级上册四单元的基础上设计的,旨在将学生的解题思路与方法繁华、条理化。掌握等量关系,形成思维模式和优化和解题模式。

在本册四单元中,根据数量关系而得到的两积之和(其中一个因数相同),从而引出ab+ac=(a+b)c的形式,这一类习题均与学生熟知的相遇问题有联系。正基于此,期望通过熟练掌握相遇问题的解题思路,利用迁移规律,力求能运用这一思路解决与之特征相似的问题。

学生是学习的主体,站在他们的立场上,他们更喜欢“动态”的课程,他们更易于接受与生活紧密联系、触手可及的问题,同时,一旦知识深深烙入他们的脑海,只要适时点拨与梳理,更易于掌握与之相近、相临的问题。因此,本课设计,通过学生爱动、爱玩、爱表现的特点,通过一系列走、演、操作与交流等到形式,力求“走近”、“走进”生活,让学生去体验、去感受数学,积极主动吸收知识,实现知识的理解、掌握与升华。达成轻松学习、快乐学习、灵活高效的目的。

教学内容:

相遇问题及运用相遇问题解题思路解决生活中的.实际问题

教学目标:

1、通过让学生亲身体验,建立并理解相遇问题的基本数量关系,并能结合实际问题描述数量关系。

2、运用迁移规律,将相遇问题解题思路运用于与之相似的问题之中,能将具有相遇问题特征的一系列问题转化成相遇问题去分析、去思考、去高效解决。

3、随着问题的解决,让学生感受到数学就在身边,使他们热爱数学,享受问题解决时的成就感。

教学重、难点:

运用相遇问题的解题思路解决具有其特征的数学问题。

教学准备:

老师准备:相遇问题演示器、玩具车、实物卡片

学生准备:玩具车、实物卡片

教学过程:

一、创设情景,导入新课:

1、提问:乘法分配律用字母应该臬表示,你能用语言描述吗?(为相遇问题的两种基本选题关系的概括奠定基础)

2、请最后一排的一名同学走向讲台,同时老师沿直线迎上去,当与该生相遇时提问:

我俩现在已经怎样——(相遇)(用生活中的场景理解、感 知什么是相遇)

请思考后回答:我俩在刚才这一过程中,什么相同,什么不同,能建立一个怎样的等量关系。(建立“甲行路程+乙行路程=两人行的总路程”)

二、建立模型:

1、建立相遇问题等量关系

(1)如果刚才我走了5秒,每秒行0.6米,后排的同学每秒行0.8米,出发时我们相距多少米?(感兴趣的问题更利于学生思考,他们会积极主动去解决问题

根扰刚才建立的等量关系,结合这里的条件,你能把它变得具体一点?

(2)通过引导得出:

老师速度 明间+学生速度=距离

(老师速度+学生速度) 时间=距离

速度和 时间=距离

(3)同桌交流:这样列的依据是什么,怎样描述这些等量关系。(将生活语言转化成数学语言)

(4)你能解决这个问题吗

2、类题强化

请两名学生表演(其他学生用玩具车演示)

小明和小东从相距560米的两地出发,相对而行,经过6分钟相遇,如果小明每分钟行75米,小东每分钟行多少米?

(1)台上台下学一演示后,请学生建立等量关系并提问:

你能建立几种。建立后引导学生间交流(学生观察表演,自已动手操作,能更深刻掌握知识)

(2)尝试解决问题,老师引导提问:你有什么发现:刚才是路程不知道,现在是速度不知道,怎么办呢?(可以设小东每分钟 米)

(3)你能解决这个问题吗?

3、建立模型

让我们来总结一下行走中产生的这一类问题吧。

甲行速度 时间+乙行速度 时间=距离

(甲行速度+乙行速度) 明间=距离

速度和 时间=距离

4、描述模型

同桌相互描述理解这几个等量关系

相遇问题教学设计 篇4

教学要求:

1.认识相遇问题的特点,学会分析相遇问题的数量关系,能用两种方法解答相遇问题中求总路程的应用题。

2.使学生形成两个物体运动的空间观念。

3.进一步培养学生分析应用题的能力,并从中培养思维的灵活性。

重点:认识相遇问题的结构特点,理解和掌握两种解题方法。

难点:理解第二种解法的思路。

课前准备:布置课前预习提纲:

1. 把表格填完整。

2. 出发3分后,两人的距离变成了多少?说明了什么?

3. 两人3分所走路程的和与两家的距离有什么关系?

教学过程:

一. 复习。

(一)口答下面应用题:

⑴张华每分走60米,走了3分,一共走了多少米?

⑵一列汽车从甲城开往乙城,用了5小时,平均每小时行42千米, 甲、乙两城相距多少千米?

师问:这两道题的数量关系是什么?板:速度时间=路程

(二)引入:

师:这两道题都是讲一个人或一个物体运动的情况,这节课我准备研究两个人或两个物体运动的情况。

二. 新授:

(一)认识相遇问题的特点。

⑴多媒体出示鸭子图,让学生观察:

①这两个鸭子出发的时间怎样?

②走的方向怎样?

③最后它们怎样了?

⑵多媒体演示后,学生回答刚才老师的问题。

板:时间:同时出发

方向:相向而行

结果:相遇

(二)出示课题及学习目标。

⑴师:这节课我们研究的就是两个物体同时出发的,相向而行的,最后相遇的这一类应用题,也就是相遇问题。

⑵出课题:相遇问题

⑶出学习目标:

① 理解相遇 、速度和的概念。

② 会用两种方法解答。

(三)教学准备题

⑴多媒体演示表格,填表,师:昨天老师布置了3道预习提纲让同学们预习课本P58-59,现在来检查一下你们的预习情况。

⑵指名回答提纲①,填表格。

⑶指名回答提纲②,出示相遇。

⑷指名回答提纲③,出示两家的距离正好是两人3分所走路程的和。

小结:这道题他们是同时出发的,相向而行的,最后他们相遇了。

(四)把准备题改成例题

⑴出示例题:张华和李诚同时从家里出发,向对方走去。张华每分走60米,李诚每分走70米,经过3分,两人相遇。他们两家相距多少米?

⑵审题:

①师问:张华和李诚出发的时间怎样?走的方向怎样?结果怎样 了?

②指名回答。

③师问:问题是求什么?求两家相距多少米也就是求张华和李诚的什么?

④指名回答。

⑤板:他们两家相距的米数正好是两人3分所走路程的和。

⑶教学第一种解法。

①多媒体演示第一种解法的思路。

②学生根据演示列式计算,

板:603+703

=180+210

=390(米)

③学生讲解题思路。

④板:先求两人各自走的路程,再加起来。

(4)教学第二种解法。

① 师问:还有别的.解法吗?让学生试着列出式子。

② 通过多媒体演示,帮助学生理解第二种解法的解题思路。

③ 四人小组讨论解题思路。

④ 指名回答解题思路,板:先求速度和,再求总路程。

⑤ 齐读。

(5)对比,小结。

师:这两种方法都是相遇问题中求总路程的,这两种方法的思路相同吗?结果相同吗?

(五)学习例5。

(1)多媒体出示自学提纲,学生自学P58例5。

提纲:①课本用了几种解题方法?

②每一种解题方法的思路是什么?

(2)指名回答提纲。

(3)通过两道例题的教学,引导学生总结出第二种解法的关系式:速度和时间=路程,并齐读一次。

(4)质疑。

四、巩固练习:

1、 课本P59做一做1。

2、 课本P59做一做2。

3、 根据算式补充条件或问题:(多媒体出示)

① 两人同时从两地相对走来,甲每分钟走45米,乙每分钟走54米,经过4分钟两人相遇。 ?(45+54)4

② 两列火车同时从两站相向开出,甲车每小时行48千米,乙车每小时行52千米,,两站间的铁路长多少千米?

485+525

③ 王师傅和李师傅共同加工一批零件,王师傅每小时加工25个,,两人一共加工4小时正好完成任务,这批零件有多少个?(25+20)4

4.只列式不计算。(多媒体出示)

① 两辆汽车同时从两地相对开出,3小时相遇,甲每小时行45千米, 乙车每小时比甲车快5千米,两地相距多少千米?

② 李明和小冬同时从某地出发,背向而行,李明每分走55米,小冬每分走60米,经过4分,两人相距多少米?(多媒体演示背向而行)

五.小测:

⑴甲、乙两人同时从两地面对面走来,经过6分相遇,(如图),求两地间的总路程。

法一:①相遇时,甲行了多少米?列式:

②526表示:

③ 两地间的总路程,列式:

法二:④两人的速度和,列式:

⑤两地间的总路程,列式:

⑵选择:(把正确答案的序号填在括号里)

① 两辆摩托车同时从一个地方向相反方向开出,甲车每小时行42千米,乙车每小时行53千米,2.5小时后两车相距多少千米?( )

A(42+53)2.5 B(53-42)2.5 C 42+532.5

② 客车和卡车分别从两地同时相向而行,客车每小时行45千米,卡车每小时比客车少行5千米,3.5小时后两车相遇,两地间的距离是多少千米? ()

A (45+5)3.5 B (45-5+45)3.5C (45+5+45)3.5

⑶列式解答:

甲、乙两个小组从两地同时相向挖一条水渠,甲组每小时挖42米,乙组每小时挖38米,经过3小时正好挖完。这条水渠共长多少米?

多练题:两地相距100千米,甲、乙两人骑自行车同时从两地相对出发, 甲每小时行14千米,经过4小时与乙相遇。相遇后再经过2小时,甲、乙两人相隔多少千米?

六.小比赛

⑴两列火车同时从两个城市相对开出,甲列车每小时行50公里,乙列车每小时行40公里,经过4小时相遇。两个城市间的铁路长多少公里?( )

A 50+404 B (50+40)4 C 504+404 D 40+504

⑵客轮和货轮同时从两个港口对开,16小时相遇。客轮每小时行28千米,货轮每小时行24千米。两个港口相距多少千米? ( )

A (28+24)16B 2416+28C 2816+24 D 2824+2816

⑶小刚家在学校南面,志华家在学校北面。小刚每分走65米,走到学校用8分;志华每分走64米,走到学校用7分。求小刚家到志华家有多远? ( )

A 658+647B 657+648 C (65+64)(8+7) D (65+64)7+65

⑷甲乙两人同时从两地出发,相向而行,甲步行每小时走5公里,乙骑自行车每小时走16公里,3小时后两人还相距7.5公里,求两地间相距多少公里? ()

A (16+5)3+7.5 B (16+5)3-7.5

C 163+53+7.5 D (16+5+7.5)3

⑸甲乙两人各从所在村相对出发,甲每小时走11公里,乙每小时走10公里,相遇时甲走4小时,乙比甲少用1小时,两个村间有多少公里? ( )

A 114+101 B 114+10(4-1) C 114+10(4+1)

D(10+11)4-10 E (10+11)3+11

七.总结。师:这节课学习了什么?这类应用题有几种解法?

八.作业:P61 1、2

相遇问题教学设计 篇5

一教材分析:

《相遇问题》是北师大版五年级下册第七单元“用方程解决问题”第二课时。这部分内容是在学生掌握一个物体运动中有关速度、时间和路程之间的数量关系的基础上安排学习的,主要是研究两个物体的运动情况,是今后学习较复杂的行程问题及工程问题的基础。

二学生分析:

五年级的学生具有一定观察、估计、画图分析、归纳、整理能力,也具有一定的抽象逻辑思维能力。鉴于学生的思维特点,在教学中我采用让学生“演一演”,“估一估”,“画一画”,“列一列”,“做一做”,“说一说”等活动,引导学生用方程解决有关类似“相遇问题”的实际问题,从而体会数学的模型思想。

三教学目标:

1、会分析简单实际问题中的数量关系,提高用方程解决简单实际问题的能力。

2、经历解决问题的过程,体验数学与日常生活密切相关,提高收集信息、处理信息和建立模型的能力。

四教学重点:

理解相遇问题的结构特点,能根据速度、时间、路程的数量关系,利用方程解决求相遇时间的问题。

五教学难点:

让学生在用方程解决行程问题、工程问题等一系列实际问题中,掌握用ax+bx=c的等量关系解决问题,体会数学的模型思想。

六教学具准备:

教学课件。

七教学过程:

一、创设情境,想方案,唤醒旧知

1、出示书上情境并由教师讲述故事:

淘气和笑笑是好朋友,他们经常一起玩,一起做作业。

他们两家相距的路程,及平时步行速度是这样的,(课件出示)

有一天,淘气到笑笑家做作业。淘气回到家后,发现文具盒忘在笑笑家了,就打电话给笑笑,说:要拿回文具盒。聪明的'同学们,想想看:淘气要拿到文具盒有哪些方案?

①方案1:笑笑送去;②方案2:淘气去取;③方案3:在途中交接。

2、揭示课题:

师:这三种方案,哪种方案淘气能最快拿到文具盒?(第三种方案)

像这样两人对走,在途中交接的情形,就是今天我们要研究的内容。(板书课题:相遇问题)

【设计意图:从学生的生活实际出发,设计“淘气把文具盒忘在笑笑家,请同学想想看:淘气可以通过哪些方法得到文具盒?”的情境,在学生说出有三种方法:“①笑笑送去;②淘气去取;③在途中交接”时,既复习“速度、时间、路程”这三者之间的关系,又引出相遇问题,这样让学生明确数学就在我们身边,从而激发学生学习数学的兴趣。】

二、感受“相遇”的特点,弄清数量关系

1、模拟演示。

请两个同学上台走一走,模拟演示一下,淘气和笑笑途中交接这种方案的情形。

师:淘气要最快拿到文具盒,他们该怎么走?

两个学生演示,其他同学注意观察:从他们的演示当中,你们有什么发现?

(根据学生回答,随机板书:同时相向相遇时间相同淘气走的路程+笑笑走的路程=总路程)

师:结合刚才的演示,你们能估一估淘气和笑笑会在什么地方相遇?为什么?

【设计意图:设计一个让学生上台走一走的情境,目的是让学生体会相遇问题的特点,从感性认识,抽象概括出相遇问题的特征:同时、相向、相遇、时间相同、淘气走的路程+笑笑走的路程=总路程。经过师生共同对知识的梳理,进一步深化对相遇问题的理解。】

2、用线段图表示刚才演示情境,并写出等量关系。

(1)请你们把刚才获取的信息在本子试着画出来,并写出数量关系式,看谁画得最简洁、明了。

(2)学生独立画图,教师巡视。

(3)展示交流,学生互评。

先由学生说一说,自己是怎样画的,然后进行互评。同时注意提醒学生:谁应画长一点?

【设计意图:借助几何直观可以把复杂的数学问题变得简明、形象,有助于探索解决问题的思路,预测结果。几何直观可以帮助学生直观地理解数学,在整个数学学习过程中发挥着重要作用。画图是学生分析数量关系的一种重要图形表征方式。画图是一种策略,让学生尝试用图来表示数量关系,是学生学习的一种需要。因为它是帮助学生理解数量关系,体现数形结合的观点。通过画图,学生能直观地看出“淘气走的路程+笑笑走的路程=总路程”这一数量关系,从而加深对题目数量关系的理解。】

3、学生独立列方程解答。

师:请同学们独立用列方程解答。在解答过程中,思考你是根据哪个等量关系式来列方程的。

三、学生独立解答,教师巡视。

1、交流反馈。

师:你是怎样列方程的?根据什么等量关系式来列?

2、回顾反思。

(1)检验结果。

师:我们怎样可以保证求得的结果一定是正确的?

(2)回顾过程。

师:让我们回顾一下,刚才我们是怎样列方程解决这个问题的?

【设计意图:回顾列方程解应用题的一般步骤,帮助学生建构系统化知识体系,提高学生熟练运用所学知识解决问题的能力。】

3、解决问题

师:现在老师把淘气和笑笑的速度调整了一下,你们还会吗?动手试一试吧!

课件出示:如果淘气的步行速度是80米/分,笑笑的步行速度是60米/分,他们出发后多长时间相遇?先想一想,再列方程解答。

(1)学生独立列出方程解决问题。

(2)反馈时,指名说说根据什么等量关系列方程。

(3)引导比较,渗透函数思想

师:请同学们,仔细观察这两道题,有什么发现呢?

四、多样素材,对比沟通,建立模型

1、师:求相遇时间你们会解决了,下面这道题该怎样解答呢?请同学们试一试吧!课件出示:(学生自选一题解答)

(1)有一份5700字的文件,由于时间紧急,安排甲、乙两名打字员同时开始录入。甲每分录100个字,乙每分录90个字,录完这份文件需要多长时间?

(2)挖一条长165米的隧道,由甲、乙两个工程队从两端同时施工。甲队每天向前挖6米,乙队每天向前挖5米,挖通这条隧道要用多少天?

2、学生独立完成。

3、全班交流:分别说说是用怎样的等量关系列出方程。

4、联系沟通,建立模型

师:前面我们解决有关“行程问题”、“打字问题”,“挖隧道问题”这些问题好像都不一样,它们有没有什么相同的地方?

引导学生说出它们都是根据:“甲的路程+乙的路程=全长”进行列方程解答。

【设计意图:从行程问题拓展到工程问题,拓宽解决问题的面。最后通过寻找相同点,沟通这些问题的联系,让学生初步体会模型思想。】

5、举例说一说。

师:同学们,其实我们的相遇问题并仅仅只限于这些,它还涉及到我们生活中的方方面面,我们试着把它找出来,好吗?

五、拓展提升

师:相遇问题难不倒同学们,类似相遇问题的题目同学们也很快解决了。你们想不想挑战难度更大的问题?那我们一起来看看下面这道题。

(课件出示)甲、乙两列火车同时从相距1980千米的两个城市相对开出,12小时后相距180千米,甲车每小时行驶70千米,乙车每小时行驶多少千米?

四、回顾梳理,总结反思。

师:这节课你有什么收获?还有哪些问题?