网站导航
老地方 > 百科 > 教学教案 > 正文

三角形的三边关系教学设计

2025/10/16教学教案

老地方整理的三角形的三边关系教学设计(精选4篇),希望这些优秀内容,能够帮助到大家。

三角形的三边关系教学设计 篇1

教学目标:

知识与技能:发现并理解三角形任意两边之和大于第三边,并能运用规律解决生活中的实际问题。培养归纳、概括能力和推理能力。

过程与方法:.积极参与探究活动,经历发现问题、探究问题及得出结论的过程,提高学生观察、思考、抽象概括和动手操作的能力。.能根据三角形三边的关系解释生活中的现象

情感态度与价值观:提高学生自主探索和合作交流的能力。激发对数学的探究兴趣,引导学生树立自己探索真理的勇气和信心,享受成功的喜悦。

教学重点:三角形三边关系的实验与探究。

教学难点:利用三角形三条边之间的关系解决实际问题。

教具准备:三角形、支直尺、不同长度的小纸条若干、分组操作记录表、双面胶、自制课件ppt

教学过程:

一、导入。

1、谈话创设情境:

这节课老师有一个愿望,那就是能够看到同学们:敢想敢说敢问敢辩敢失败,特别是敢失败,因为水稻之父袁隆平曾经说过:失败里包含着成功的因素。你们能帮助老师实现愿望吗?(课件出示)

2、复习旧知:

(1)(欣赏图片)你看到了什么?

(2)那你能说一说,你对三角形都有哪些了解?

(3)三个顶点,三个角,三条边,三角形具有稳定性;

(4)那么到底什么是三角形?(由三条线段围成的图形)分析这句话突出“围成”。

3、质疑:是不是任意的三条线段都能拼成三角形呢?导入新课

二、动手操作、探究新知。

(一)、分组操作:请同学们用你们手上的小纸条来围成一个三角形,你们能完成吗?

操作要求:

1、每6人一组。组长一人、记录员一人、测量员一人、其余的是操作员

2、测量员量出你所选择的纸条的长度;

3、记录员做记录;

4、操作员动手拼三角形,把你拼出来的图形贴在下面;

5、组长汇报结果。

注意:相邻的两条线段要端点相连。

(二)汇报结果:按顺序组长分组汇报结果(本组选择的纸条的`长度、能否拼成三角形)。

展示操作结果:

试验次数三边长度(cm)结果三角形三条边的长度关系

(1)3、5、9否较短的两条边长度之和小于第三边3+5<9

(2)3、6、9否较短的两条边长度之和等于第三边3+6=9

(3)3、5、7是较短的两条边长度之和大于第三边3+5>7

(4)5、6、7是较短的两条边长度之和小于第三边5+6>7

(5)5,8,13否较短的两条边长度之和等于第三边5+8=13

(6)7,11,12是较短的两条边长度之和大于第三边7+11>12

(7)18,7,5否较短的两条边长度之和小于第三边5+7<18

(8)11,4,15否较短的两条边长度之和等于第三边4+11=15

(三)引导学生发现特性:(课件演示)

1、两条边的长度之和小于或等于第三条边的长度不能围成三角形

2、较短的两条边的长度之和大于第三条边的长度能围成三角形

3、学生自由讨论、总结:三角形三条边的关系(三角形任意两条边的长度之和大于第三条边的长度)(揭题、板书)

4、读一读,说一说关键字词是什么?你怎样理解(任意和大于)?

三、精彩练习、拓展提升。(课件出示)

在能围成三角形的各组小棒下面画“√”。(单位:厘米)

(5)1cm2cm3cm()(6)4cm2cm3cm()

(7)3cm4cm5cm()(8)3cm3cm5cm()

四、学以致用。

(一)、课件出示:课本82页例3情境图。

1、这是小明同学上学的路线,请大家仔细观察一下,他可以怎样走?

2、为了描述方便,我们把这几条路线分别标上颜色,在这几条路线中哪条最近?为什么?

3、归纳汇报:请同学看一看,连接小明家、商店、学校三地,近似一个什么图形?连接小明家、邮局、学校三地,同样也近似一个什么图形?因为这三条路正好形成两个三角形,而中间的这条路相当于三角形的一条边,而在三角形中,其他两边之和一定大于第三边,所以中间的这条路最近。得出结论:两点间所有连线中线段最短,这条线段的长度叫做两点间的距离。(板书)

(二)完善表格。

小棒长度(厘米)能否围成三角形

第一根第二根第三根

35

35

35

35

35

35

35

35

五、课堂总结。

同学们,通过今天的研究你有什么收获吗?

1.发现并理解了:三角形任意两边之和大于第三边,并能运用规律解决生活中的实际问题,找出到达一个地方最短的路线。

2.通过动手实践,分析数据,体验探索和发现三角形边的关系的过程,培养了发现问题的意识及提出问题的能力,积累探索问题的方法和经验。

板书设计:

三角形三边关系

三角形任意两边之和大于第三边。

两点间所有连线中线段最短,这条线段的长度叫做两点间的距离。

三角形的三边关系教学设计 篇2

教学内容

人教版义务教育课程实验教科书数学四年级下册P82页。

教学目

1.让学生通过动手实践、自主探索、合作交流发现三角形任意两边之和大于第三边。

2.能判断给定长度的三条线段是否围成三角形,能运用三角形任意两边之和大于第三边这一知识解决生活中的简单的实际问题,感受到生活中处处有数学。

3.通过学习发展学生的空间观念,使学生体验成功的喜悦,激发学生学习数学的兴趣。

教具、学具准备

多媒体课件,不同长度不同颜色的小棒若干根,实验表格 。

教学过程

一、创设情境,导入新课

师:(出示课件)同学们看,图上这些地方你们都熟悉吗?

(我们的学校、鼓楼商场还有学校后门的建设银行。)

师:如果把我们学校大门到建行看成一条直路的话,把这三个地方连接起来,就成什么图形?

师:老师从学校大门口到建行去取钱,有几条路可走?猜一猜我会走哪条路呢?为什么?

师:老师在银行取了钱后,现在要去鼓楼商场购物,又有几条路可走?我会走哪条路?

师:老师现在要回学校,我又有几条路可走?我又会选择哪条路呢?

师:同学们你们为什么认为在三角形的线路中走其中一条边的线路比走另外两条边组成的线路近呢?把你的想法在小组里交流一下。

师:大多数的同学都是从生活经验中发现走两条边的'线路比走另一条边的线路远。那么,有没有别的办法证明我们的这种判断是正确的呢?

(学生困惑,沉默不语.)

师:今天我们就用数学的方法来研究一下,看看在三角形中,三边的关系是怎样的?

(板书课题:三角形的三边关系)

二、设疑激趣,动手探究

师:(设疑)用小棒代替线段。请看,老师这儿有红、蓝、黄色的小棒若干根,任意拿三种颜色的小棒能围成一个三色的三角形吗?(学生会出现能围成和不能围成两种情况。)

师:有两种意见,到底谁的猜测是正确的呢?让我们动手操作后再谈自己的发现。

师:我请一位同学上来任意拿出不同颜色的三根小棒,看看能不能围成三角形?

(学生上台演示,其他同学看。)

师:这位同学围成三角形了吗?(根据学生的情况将数据填在表格中)你们想不想试试?

师:请拿出老师为你们准备的小棒,要求用三种颜色的小棒围三角形。看看哪些长度的小棒能围成三角形,哪些长度的小棒不能围成三角形。

同桌分工合作,一个同学围三角形,然后读出小棒上标出的长度;另一个同学作记录。

(单位:厘米)

能围成三角形的三根小棒(红、蓝、黄)的长度分别是:

不能围成三角形的三根小棒(红、蓝、黄)的长度分别是 :

你的重大发现

三、汇报交流,发现规律

让每组同学汇报围成和围不成三角形的数据。

师:同样用三根小棒,为什么有的能围成三角形,为什么有的不能围成三角形呢?你从中发现了什么?

根据学生的情况,进行课件演示能围成和不能围成两种情况。(不能围成又有两种情况:两条边之和等于第三边的情况 ;两边之和小于第三边的情况)

师:到底什么样长度的三根小棒可以围成三角形呢?

结论一: 两边之和大于第三边。

师:同学们都同意这个结论吗?有不同意见吗?

根据学生的情况,随机用不能围成的一组数据,如“3、7、10”举一例:3+10>7,那为什么不能围成一个三角形呢?

师:看来同学们发现的这个结论不够全面.还能怎么修改一下呢?

进一步得出

结论二: 三角形任意两边之和大于第三边。

师:这个结论全面吗?是否适合任何一个三角形呢?请同学们任意画一个或摆一个三角形,量出三边的长度,验证一下。

师:同学们真了不起,通过大家的共同努力,发现了一个有关三角形的三边关系的重要结论,那就是:三角形中任意两边之和大于第三边。

四、学以致用,解决问题

1.解释老师所行路线的原因。

2.判断。

(2)(3)(4)

3.(课件演示)小猴盖新房,他准备了2根3米长的木料做房顶,还要一根木料做横梁,请你们帮他想一想,他该选几米长的木料最合适呢?

五、全课小结。

三角形的三边关系教学设计 篇3

1、通过动手实践,自主探索,合作交流发现三角形任意两条边的和大于第三边。

2、能判断给定长度的三条线段是否能围成三角形,能运用三角形三边关系解决生活中简单的实际问题,感受到生活中处处有数学。

3、在探索体验的过程中,能进行简单、有条理的思考。通过学习,发展空间观念,体验成功的喜悦,激发学生学习数学的兴趣。

理解、掌握三角形任意两边之和大于第三边的性质。

引导探索三角形的边的关系,并发现三角形任意两边的和大于第三边的性质。

课件、不同长度纸条若干张、实验表格。

一、创设情境

1、出示情境图。

政府

师:同学们仔细观察这幅图,想一想从老师家到学校有几条路可以走?

(学生通过观察并结合自己的生活经验,可以说出这样几条线路:从老师家直接到学校;从老师家经过政府再到学校,或者从老师家经过新华书店再到学校。)

师:你觉得老师走哪条路最近呢?为什么?

(学生会说出中间这条线路最快,但原因说不清楚。)

师:今天,这节课我们就要从数学的角度眼研究为什么走中间这条路最近。

2、大胆猜测

师:请同学们观察,在这幅图中,你可以发现几个三角形?

(学生边说边用手指出两个三角形)

师:在每个三角形里,老师从家直走到学校的路程是三角形的`一条边,走旁边的路走过的路程又是这个三角形的什么呢?

师:根据大家的判断,你们猜猜看,三角形三条边之间会有怎样的关系呢?

(学生通过观察会猜出:三角形两边的和大于第三条边)教师板书。

师:是不是所有是三角形的三条边都有这样的关系呢?你们能肯定吗?

现在,我们就用数学方法来研究一下,看看三角形中,三边的关系是怎样的。?

揭示课题:三角形的三边关系。

二、自主探究

动手实验:

用三张纸条摆一个三角形。

师:同学们的桌上都有一些不同长度的纸条,请大家随意拿三张来摆三角形,看看有什么发现?(同桌合作)

三角形的三边关系教学设计 篇4

教学目标:

1、结合具体的情境和直观操作活动,让学生探索并发现三角形任意两边和大于第三边。

2、感受动手实验是探索数学规律的途径和方法。

3、培养学生初步的应用数学知识解决实际问题的能力。

教学重点:在观察、操作、比较、分析中发现三角形边的关系。

教学难点:应用三角形边的关系解决问题。

教学关键:借助实际操作和生活经验,引导学生感受三角形三条边的长度关系。

教具准备:多媒体课件

教学过程:

一、复习:

我们上节课已经认识了三角形,请同学们回忆一下什么样的图形是三角形?(由三条线段围成的图形)。谁能说出它各部分的名称?三角形具有什么特性?

二、探索新知

师:三角形是由三条线段围成的图形,如果用一根小棒代替一条线段,围成一个三角形需要几根小棒呢?

猜一猜,任意给你3根小棒,你能围成三角形吗?(能或不能)

实践是检验真理的唯一标准,咱们来动手操作,验证一下。

研究一:任取3根小棒围三角形,看能不能围成。

师:“任取3根”是什么意思?

对了,同学们自己随便取3根小棒试着围一围,多围几次。你发现了什么?

汇报

师总结:看来并不是随随便便的3根小棒就可以围成三角形,这里一定隐藏着什么秘密。我们继续来探究。

研究二:什么情况下3根小棒不能围成三角形。

(1)从你的小棒中找出不能围成三角形的3根小棒,并摆出来。

(2)想一想,这3根小棒为什么围不成三角形呢?再小组内交流一下。

板书:围不成:较短2边的和小于第3边。

师:看来,较短的两根小棒长度的和小于第三根小棒时的确围不成三角形,除了这种情况,还有什么情况下3根小棒不能围成三角形呢?(自己摆)

生演示汇报。(较短两根小棒加起来的长度和第三根一样长的时候也不能围成三角形)

师:看来较短两根小棒长度等于第三根时也不能围成三角形。板书:较短2条边的和=第3边

师:那么,在什么情况下,三根小棒能围成三角形。我们继续来研究(同桌之间摆一摆,并讨论)出示研究三:在什么情况下,三根小棒能围成三角形。

师:根据我们刚才的研究,我们知道较短两边的和小于第三边,较短两边的和=第三边,这两种情况都围不成三角形,那么你们猜测一下,在什么情况下,三根小棒能围成三角形。

板书:围成:三角形较短两边的和大于第三边。

师:我们这个结论是否正确呢?我们来验证一下。找出能围成三角形的三根小棒围一围,比一比。

汇报:同意吗?看来我们的猜测是正确的。

这就是我们今天所要学习的三角形边的关系。板书:三角形边的关系。齐读。

同意这种说法吗?

我们来观察这个三角形(等边三角形)来比较一下它的三条边怎样(相等)。找不出较短的2条边啊!再看,我取2条长度相等的小棒,再取一个小棒围成了一个三角形,能找出较短的2条边吗?

现在矛盾出来了,我们说的三角形边的关系,应该是所有的三角形,这两种也是三角形,可是却不能用刚才这个结论来解释,对它们公平吗?看来。“较短”这个词并不恰当,这个词怎样改比较好?板书:任意。齐读

老师出示带有数据的三个三角形,你能根据这些数据来解释一下任意两边的和大于第三边吗?

师:三角形任意两边的和大于第三边,任意这个词很重要,接下来我们就用这个知识来做有关练习。

三、拓展练习

三角形三边关系教学反思:“三角形任意两条边的和大于第三边”是三角形的又一个重要特性。本节课是在学生已经认识了三角形的特征及各部分的名称,了解了三角形具有稳定的特性等知识以及在生活中已经积累了较丰富的“弯路比直路要长”等相关经验的基础上,教学三角形边的关系。在本节课中教师注意关注学生已有的知识和经验,给学生提供充分从事数学活动的机会,让学生通过试验、操作、讨论和交流等活动,自主概括出三角形三边的关系。本课教学主要有以下几个特点:

1、通过多种相关联的活动,自主探索三角形边的特性。

借助生活经验、观察实物、实验操作、推理思考等都是学习理解抽象几何概念的重要手段,也是发展学生空间观念的主要途径。在本节课中,教师为学生提供了充分从事数学活动的机会,让他们通过实验、操作、思考、讨论和交流等活动,探究发现、抽象概括出三角形边的特性——任意两边的和大于第三边。整个数学活动可分为4个层次:

⑴测量出实验操作的每根小棒的长度。要求学生测量出每根小棒长度,意在让学生感悟到三角形边的特性跟它的三条边的长度有关系,为学生在探究三角形边的特性时的思维活动给予“定向”。

⑵分组进行实验操作活动,意在让学生了解:任意的三根小棒首尾连接,有的能摆成三角形,有的不能摆成三角形。另外,教师在设计实验报告单时,有意识的.让学生把能摆成的和不能摆成的分开记录。这样设计,方便学生对实验的结果进行观察、比较,进而发现规律。

⑶小组内学生根据实验操作的结果,合作探究三角形三边的关系,这是新课程倡导“动手实践”的根本目的。

⑷全班交流。学生把探究、发现的三角形的特性进行全班交流,教师适时地指导学生用规范的数学语言进行概括。

2、结合教学内容,创设问题情境。

让学生在具体的生活情境中学习数学知识,是本次课改的一大特色。然而创设情境不能仅仅为了提高学生的学习兴趣,还必须结合教学内容,隐含丰富的数学信息,激发学生从数学角度去思考问题。本课从学生的现实生活出发,结合教学内容,选取学生熟悉的事例——小明上学的路线图来创设情境。通过“在小明上学的三条路线中哪条路线最近?为什么?”这样一个问题,激活学生的生活经验,为本节课的学习服务。由于学生在日常生活中积累了较为丰富的“弯路比直路长”的经验,因此都知道走第2条路最近并能用个性化的语言解释。这个环节的教学是让学生用生活经验来解释生活事例。

如果让学生仅仅停留在用已有的知识经验来解释生活事例的层次和水平,那不是我们数学教学的目的。于是教师用线段连接小明家、邮局、学校,出现了一个三角形。引导学生观察发现:第2条路走的路程是三角形的一条边,第1条路走的路程是三角形两条边的和。再适时地引导学生思考:“是不是所有的三角形两边的和都会大于第三边呢?三角形的三条边之间到底有什么关系?”非常自然地实现了从“生活化”到“数学化”的转变。整个教学过程,既能够激发学生的学习兴趣,又能够帮助学生用数学的眼光去看现实生活,用数学的思想、方法解决生活问题。

本节课,学生对“三角形任意两边的和大于第三边”这一特性的认识,是在教师的组织引导下,积极主动参与一个个相关联的活动过程中逐步建立起来的。即:解释生活事例—动手实验操作—探索发现规律—抽象概括特性—运用深化特性。在这些活动中,既让学生经历了知识形成的过程,清晰的认识了三角形边的特性,又提高了学生实验操作、分析思考和抽象概括的能力。