小学数学教案
老地方整理的小学数学教案(精选4篇),希望这些优秀内容,能够帮助到大家。
小学数学教案 篇1
教学目标:
1、经历探索分数基本性质的过程,理解分数的基本性质。
2、能运用分数基本性质,把一个数化成指定分母(或分子)大小不变的分数。
3、经历观察、操作和讨论等数学活动,体验数学学习的乐趣及数学与日常生活密切联系。
教学重点:
运用分数的基本性质,把一个数化成指定分母(或分子)而大小不变的分数。
教学难点:
联系分数与除法的关系,理解分数的基本性质,沟通知识间的联系。
教学准备:
多媒体课件 长方形白纸、圆片,彩色笔等。
教学过程:
一、 创设情境,激趣导入
师:同学们,新的学期到来了,你们刚入校园时觉得我们学校都发生了哪些变化,(换了新课桌,有了新的洗手间,有了文化走廊,有了开心农场),说到开心农场,还有一个小故事,开学初,校长决定把这块地的三分之一分给四年级,六分之二分给五年级,九分之三分给六年级,四年级同学认为校长不公平,分给六年级的同学多而分给他们的少,校长听了,笑了,谁能根据自己的预习告诉老师校长笑什么?
生1:四、五、六年级分的地一样多。
生2:……
师:到底校长分的公平不公平,我们来做个实验吧?
二、动手操作,探究新知
1、小组合作,实验探究。
师:请同学们拿出你们准备好的学具,按平时的分组习惯四人一组,用你们的学具来代替这块地,像校长一样来分地吧。
2、汇报结果
师生交流:你们是怎样做的?谁能说一说,请几个同学上台演示并口述演示过程。
生1:用三张同样的长方形的纸来代替这块地,分别涂出其中的三分之一,六分之二,九分之三。经过对比发现三块地一样多。
生2:用三个同样的圆片分别涂出其中的三分之一,六分之二,九分之三。经过对比发现三块地一样多。
生3:用三条线段分别画出其中的三分之一,六分之二,九分之三。经过对比发现三块地一样多。
生4:把分数化成小数,他们的商也一样,所以三块地的面积一样大 。
生5:……
3、课件展示,得出结论。师:校长分的和你们一样吗?我们再来看看小电脑是如何拼的,(利用优质资源课件演示分地的过程,师生共同观察总结得到校长分的地一样多。)
(设计意图:这样设计的目的是为了更有利于学生主体个性的发挥,在探究活动中充分发挥学生的个体的潜能,给学生足够的时间和想象的空间,进行小组合作式的探究活动,让学生自由的猜想,使实验成为自己的需要,同时让学生思考用什么方法验证,使学生带着浓浓的兴趣进入探究新的学习活动之中。)
4、探索分数的基本性质。
师:三个年级分的地一样多,那么你们觉得、 这三个分数的大小怎么样?
生:相等。
师:同学们请看这组分数有什么特点?(板书 =)
生:分数的分子分母发生了变化分数的大小不变。
师:请同学们从左往右仔细观察,第一个分数和第二个分数相比分子分母发生了什么变化?第一个和第二个,第二个和第三个呢?
生:分子分母同时乘2,……
师:谁能用一句换来描述一下这个规律?
生:给分数的分子分母同时乘相同的数。(师随着板书)
师:同学们在反过来从右往左观察,分数的分子、分母有什么变化规律?
生:分数的分子分母同时除以相同的数。
师:像这样给分数的分子分母同时乘或(除以)相同的数,分数的大小不变。就是我们这节课学习的新知识。(板书 分数的基本性质)。
师:结合我们的预习,对于分数的基本性质同学们还有什么不同的意见?
生:0除外。
师:为什么0要除外?
生:因为分数的分母不能为0.
师:(补充板书0除外)在分数的基本性质中,那几个词比较重要?
生:同时 相同 0除外
师:(把这三个词用红笔加重)同学们有没有发现分数的基本性质和谁比较相似?
生:商不变的性质。
师:为什么?
生:我们学过分数与除法的关系,被除数相当于分子,除数相当于分母,所以他们是相通的。
师:数学知识中有许多知识如像商不变性质与分数的基本性质是一致的。因此平时学习中我们要触类旁通,灵活运用,才会举一反三。
三、应用新知,练习巩固。
(一) 练一练
(二)摸球游戏。老师手中有一个箱子,里面装有许多水果,水果上面写着不同的分数,如果你摸到一个水果,说出一个与它大小相等,而分子分母不同的新分数,这个水果就奖励给你。
(二) 判断(抢答)
1、 分数的分子、分母都乘过或除以相同的数分数的大小不变。( )
2、 把的分子缩小5倍,分母也缩小5倍分数的大小不变。( )
3、 给分数的分子加上4,要是分数的大小,分母也要加上4。( )
(四)测一测
1、把和都化成分母是10而大小不变的分数。
2、把和都化成分子是4而大小不变的分数。
3、的分子增加2,要是分数大小不变,分母应增加几?
四、总结。
1、这节课大家表现的都很棒,谁能说说你这节课你都知道哪些知识?
2、把板书最后补充成一条鱼,希望大家拥有一双明亮的眼睛,肚子里装满知识,在知识的海洋里遨游。(完成板书)
五、作业
练习册2、4题
板书设计:
分数的基本性质
给分数的分子分母同时乘或除以相同的数(0除外)分数的大小不变。
小学数学教案 篇2
关于小学数学教案汇总10篇
作为一位优秀的人民教师,很有必要精心设计一份教案,教案是备课向课堂教学转化的关节点。那么教案应该怎么写才合适呢?下面是小编收集整理的小学数学教案10篇,欢迎大家借鉴与参考,希望对大家有所帮助。
小学数学教案 篇3
教学目标:
1. 理解和掌握两位数加两位数(进位)的计算方法,并能正确地进行计算。
2. 培养算法思维、提倡算法多样化。
3. 初步体会估算在解答实际问题中的应用。
教学重难点:
1. 理解和掌握两位数加两位数(进位)的计算方法,并能正确地进行计算。
2. 培养算法思维、提倡算法多样化。
教学过程:
一、创设情境,引入
师:小朋友,你喜欢玩具吗?
师:我也喜欢玩具。(出示模拟商店)小胖努力学习,取得了进步,今天妈妈特地带他来玩具店买玩具,大家看到了什么?
师:小胖想买足球和长颈鹿玩具,一共要多少元呢?怎样列式呢?你是怎样算的?
生:34+25
师:怎么计算,可以怎么想呢?
生:(复习两位数加两位数不进位算法)
二、探究新知
师:小胖又改变了主意,他不想要长颈鹿了。他想买足球和小飞机,可妈妈只带了60元,够不够?小朋友,你们愿意帮小胖算一算吗?
师:一共花了多少钱?怎样列式?
学生列式:38+25
师:小胖估计了一下要60元,你说够不够?学生自由回答。
师:小丁丁也说不够,到底够不够算算就知道。
(1)探究算法
①学生独立使用位值板摆小圆片或小组合作摆。
②全班交流、自愿板演并说想法。
③师:大家开动脑筋,想了这么多算法,但计算结果都相同。那现在能肯定小胖的估算结果够不够吗?
(2)归纳算法
师生共同观察、讨论:
第1、2种是先两位数加整十数,再两位数加一位数; 第4、5、6种是先两位数加一位数,再两位数加整十数; 第3种是整十数加整十数,个位上的数加个位上的数。 这几种算法都是通过分拆,变为原来学的本领进行计算。
问:你喜欢哪一种?
三、巩固练习
1. 练一练
师:如果我买小熊和船模,怎样列式?要多少元呢?请你们同桌两人一起帮我算一算,好吗?
生:28+29 学生汇报算法。
(1)自己先将选的两样玩具的钱数列式计算、验证先前的估算结果够不够。 如娃娃和足球27+25=? 50元 帆船和汽车29+56=? 80元
(2)交流算法,集体评价。
(3)数学书第3题。
学生任选两题计算(可用不同算法)、组内交流核对。
2. 选择。(用手势表示正确答案的编号)
(1)15+37=( )
① 42
② 52
③ 62
(2)49+24=( )+ 23 =73
① 60
② 69
③ 50
3. 判断。(对的用表示,错的用表示)
(1)26+18=34 ( )
(2)75+19=94 ( )
4. 请你动手算一算,看看谁算得最快最正确?
38+29
27+34
47+34
34+28
25+48
48+38
5. 现在每组都有100元体育用品店的购物券。请你们小组合作,用这张购物券来买体育用品,每种物品仅限一件!看看哪一组买的用品最多,总价最接近100元!
哪个小组按要求挑的体育用品最多,总价最接近100元,而且计算正确,哪组就是今天的冠军!
四、课堂小结
今天去玩具店有何收获?
小学数学教案 篇4
教学过程:
一、复习。
1.出示课本第98页复习题。(口答问题)
问:已知工作时间,怎样用分数表示工作效率?
已知单位时间完成了工作总量的几分之几时,如何求工作时间?
工作总量、工作时间、工作效率之间有什么关系?
小结:
可以用单位1表示工作总量,
用完成工作总量的几分之一表示工作效率。
工作总量、工作时间和工作效率之间的关系是:
工作总量工作效率=工作时间。
板书课题:工程问题。
二、新授。
1.教学例10。
(1)出示例10:一段公路长30千米,甲队单独修10天完成,乙队单独修15天完成。两队合修几天可以完成?
(2)让学生自己解答,指名板演。
(3)让学生说一说是怎样想的。(引导学生说出:要求两队合修几天完成,就要先求出两队的工作效率和,再求两队合修的时间。)
(4)具体让学生说一说3010和3015求的是什么?这两个商加起来,得到的是什么?再用它们的和去除30,得到的是什么,是根据什么数量关系算的?
(5)小结。
这道题的数量关系是:
工作总量工作效率和=工作时间
(6)问:如果我们去掉长30千米这个条件时,还能不能解答?
(7)引导学生解答:
问:这里的工作总量是多少千米没有告诉,那么工作总量用什么表示?
工作总量是1。甲队单独修10天完成,可以求什么?怎样列式?
乙队单独修15天完成,可以求什么?怎样列式?
甲队每天修这段公路的,乙队每天修这段公路的,可以求什么?怎样列式?
(8)根据:工作总量工作效率和=工作时间
这道题应怎样列式解答?学生独立解答。指名板演。
(天)
答;两队合修6天可以完成。
2.对比小结。
(1)从这两道来看,不同点是什么?不告诉具体工作总量的,工作总量用什么来表示?
工程特点是:不告诉具体的工作总量,而用单位1来表示。
(2)从解题过程看,工作怎样表示?
工作效率是用分率来表示(不是具体数量)
(3)所用的数量关系相同吗?
都是用数量关系工作总量工作效率和=工作时间来解答。
三、巩固练习
完成课本第98页做一做题目。
四、作业。
 网站导航
    网站导航