网站导航
老地方 > 百科 > 计划大全 > 正文

高一数学教师教学工作计划

2025/10/27计划大全

老地方整理的高一数学教师教学工作计划(精选4篇),希望这些优秀内容,能够帮助到大家。

高一数学教师教学工作计划 篇1

一、教学内容

本学期将完成“《数学①》必修”和“《数学④》必修” (人民教育出版社教A版)的学习,教学辅助材料有《三维设计》和自愿订阅学习方法报部分单元练习及学法指导阅读材料。二、教学目标与要求

(一)前半期完成《数学①》主要涉及三章内容:

第一章集合与函数的概念(约13学时)

通过本章学习,使学生感受到用集合表示数学内容时的简洁性、准确性,帮助学生学会用集合语言表示数学对象,为以后的学习奠定基础。

1.了解集合的含义,体会元素与集合的属于关系,并初步掌握集合的表示方法;

2.理解集合间的包含与相等关系,能识别给定集合的子集,了解全集与空集的含义;

3.理解补集的含义,会求在给定集合中某个集合的补集;

4.理解两个集合的并集和交集的含义,会求两个简单集合的并集和交集;

5.渗透数形结合、分类讨论等数学思想方法;

6.在引导学生观察、分析、抽象、类比得到集合与集合间的关系等数学知识的过程中,培养学生的思维能力。

第二章函数的概念与基本初等函数Ⅰ(约14学时)

教学本章时应立足于现实生活从具体问题入手,以问题为背景,按照“问题情境—数学活动—意义建构—数学理论—数学应用—回顾反思”的顺序结构,引导学生通过实验、观察、归纳、抽象、概括,数学地提出、分析和解决问题。通过本章学习,使学生进一步感受函数是探索自然现象、社会现象基本规律的工具和语言,学会用函数的思想、变化的观点分析和解决问题,达到培养学生的创新思维的目的。

1.了解函数概念产生的背景,学习和掌握函数的概念和性质,能借助函数的知识表述、刻画事物的变化规律;

2.理解有理指数幂的意义,掌握有理指数幂的运算性质;掌握指数函数的概念、图象和性质;理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质;了解幂函数的概念和性质,知道指数函数、对数函数、幂函数时描述客观世界变化规律的重要数学模型;

3.了解函数与方程之间的关系;会用二分法求简单方程的近似解;了解函数模型及其意义;

4.培养学生的理性思维能力、辩证思维能力、分析问题和解决问题的能力、创新意识与探究能力、数学建模能力以及数学交流的`能力。

第三章函数的应用(约9学时)

结合实际问题,感受运用函数概念建立模型的过程和方法,体会函数在数学和其他学科中的重要性,初步运用函数思想理解和处理现实生活和社会中的简单问题。学生还将学习利用函数的性质求方程的近似解,体会函数与方程的有机联系。

1、结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系。

2、根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法。

3、利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。

4、收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用。

(二)后半期完成《数学④》主要涉及三章内容:

第一章三角函数(约16学时)

通过本章学习,有助于学生认识三角函数与实际生活的紧密联系,以及三角函数在解决实际问题中的广泛应用,从中感受数学的价值,学会用数学的思维方式观察、分析现实世界、解决日常生活和其他学科学习中的问题,发展数学应用意识。

1.了解任意角的概念和弧度制;

2.掌握任意角三角函数的定义,理解同角三角函数的基本关系及诱导公式;

3.了解三角函数的周期性;

4.掌握三角函数的图像与性质。

第二章平面向量(约12学时)

第三章三角恒等变换(约8学时)

通过推导两角和与差的余弦、正弦、正切公式,二倍角的正弦、余弦、正切公式以及积化和差、和差化积、半角公式的过程,让学生在经历和参与数学发现活动的基础上,体会向量与三角函数的联系、向量与三角恒等变换公式的联系,理解并掌握三角变换的基本方法。

1.掌握两角和与差的余弦、正弦、正切公式;

2.掌握二倍角的正弦、余弦、正切公式;

3.能正确运用三角公式进行简单的三角函数式的化简、求值和恒等式证明。

三、教学常规要求及建议(要点)

根据学校对教师的常规要求,结合本备课组实际,拟提出以下几点建议,望老师们自觉执行,落实教学各个环节,不拉同行的后腿,力求各班级之间平均分的差距达到学校要求。

1、做好传、帮、带工作,达到学校教务处要求。本组新分1青年教师,中二1人、中一教师2人,高级教师4人,在学校要求参加集体听课、交流的教研活动之外,组内教师之间不定时地听随堂课并交流不少于听课总数的半。

2、集体参加组内专题备课2—3次,每次中心发言人应有发言材料准备,其他教师补充发言记录。

3、教师每周全收、批学生作业次数不低于上课总节数的五分之三(正常上课没周收改作业至少3次。

3、每节课应有教学目标、重点,突出解决的问题和方法、过程。

4、做好教学反思(每周至少有一次)

高一数学教师教学工作计划 篇2

一、指导思想:

使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会提高的需要。具体目标如下。

1、获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。经过不一样形式的自主学习、探究活动,体验数学发现和创造的历程。

2、提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本本事。

3、提高数学地提出、分析和解决问题(包括简单的实际问题)的本事,数学表达和交流的本事,发展独立获取数学知识的本事。

4、发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出确定。

5、提高学习数学的兴趣,树立学好数学的信心,构成锲而不舍的钻研精神和科学态度。

6、具有必须的数学视野,逐步认识数学的科学价值、应用价值和文化价值,构成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

二、教材特点:

我们所使用的教材是人教版《普通高中课程标准实验教科书·数学(A版)》,它在坚持我国数学教育优良传统的前提下,认真处理继承,借签,发展,创新之间的关系,体现基础性,时代性,典型性和可理解性等到,具有如下特点:

1、“亲和力”:以生动活泼的呈现方式,激发兴趣和美感,引发学习活力。

2、“问题性”:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神。

3、“科学性”与“思想性”:经过不一样数学资料的联系与启发,强调类比,推广,特殊化,化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维本事,培育理性精神。

4、“时代性”与“应用性”:以具有时代性和现实感的素材创设情境,加强数学活动,发展应用意识。

三、教法分析:

1、选取与资料密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生“看个究竟”的冲动,以到达培养其兴趣的目的。

2、经过“观察”,“思考”,“探究”等栏目,引发学生的思考和探索活动,切实改善学生的学习方式。

3、在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。

四、学情分析:

两个班均属普高班,学习情景良好,但学生自觉性差,自我控制本事弱,所以在教学中需时时提醒学生,培养其自觉性。班级存在的最大问题是计算本事太差,学生不喜欢去算题,嫌麻烦,只注重思路,所以在以后的教学中,重点在于培养学生的计算本事,同时要进一步提高其思维本事。

同时,由于初中课改的'原因,高中教材与初中教材衔接力度不够,需在新授时适机补充一些资料。所以时间上可能仍然吃紧。同时,其底子薄弱,所以在教学时只能注重基础再基础,争取每一堂课落实一个知识点,掌握一个知识点。

五、教学措施:

1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和提高。

2、注意从实例出发,从感性提高到理性;注意运用比较的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。

3、加强培养学生的逻辑思维本事就解决实际问题的本事,以及培养提高学生的自学本事,养成善于分析问题的习惯,进行辨证唯物主义教育。

4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的本事。

5、自始至终贯彻教学四环节,针对不一样的教材资料选择不一样教法。

6、重视数学应用意识及应用本事的培养。

高一数学教师教学工作计划 篇3

一、教材依据

本节课是北师大版数学(必修2)第二章《解析几何初步》第一节《1.2直线的方程》第一部分《直线方程的点斜式》内容。

二、教材分析

直线方程的点斜式给出了根据已知一个点和斜率求直线方程的方法和途径。在求直线的方程中,直线方程的点斜式是基本的,直线方程的斜截式

、两点式都是由点斜式推出的。从初中代数中的一次函数引入,自然过渡到本节课想要解决的问题求直线方程问题。在引入,过程中要让学生弄清

直线与方程的一一对应关系,理解研究直线可以从研究方程和方程的特征入手。

在推导直线方程的点斜式时,根据直线这一结论,先猜想确定一条直线的条件,再根据猜想得到的条件求出直线方程。

三、教学目标

知识与技能:

(1)理解直线方程的点斜式、斜截式的形式特点和适用范围;

(2)能正确利用直线的点斜式、斜截式公式求直线方程。

(3)体会直线的斜截式方程与一次函数的关系。

过程与方法:在已知直角坐标系内确定一条直线的几何要素直线上的一点和直线的倾斜角的基础上,通过师生探讨,得出直线的点斜式方程;学生通过对比理解截距与距离的区别。

情态与价值观:通过让学生体会直线的斜截式方程与一次函数的关系,进一步培养学生数形结合的思想,渗透数学中普遍存在相互联系、相互转化等观点,使学生能用联系的观点看问题。

四、教学重点

重点:直线的点斜式方程和斜截式方程。

五、教学难点

难点:直线的.点斜式方程和斜截式方程的应用。

要点:运用数形结合的思想方法,帮助学生分析描述几何图形。

六、教学准备

1.教学方法的选择:启发、引导、讨论.

创设问题情境,采用启发诱导式的教学模式引导学生探索讨论,学生主动参与提出问题、探索问题和解决问题的过程,突出以学生为主体的探究性

学习活动。

2.通过让学生观察、讨论、辨析、画图,亲身实践,调动多感官去体验数学建模的思想;学生要学会用数形结合的方法建立起代数问题与几何问题间的密切联系。为使学生积极参与课堂学习,我主要指导了以下的学习方法:

①.让学生自己发现问题,自己通过观察图像归纳总结,自己评析解题对错,从而提高学生的参与意识和数学表达能力。

②.分组讨论。

高一数学教师教学工作计划 篇4

一、学生状况分析

学生整体水平一般,成绩以中等为主,中上不多,后进生也有一些。几个班中,从上课一周来看,学生的学习进取性还是比较高,爱问问题的同学比较多,但由于基础知识不太牢固,上课效率不是很高。

二、教材分析

使用北师大版《普通高中课程标准实验教科书·数学》,教材在坚持我国数学教育优良传统的前提下,认真处理继承、借鉴、发展、创新之间的关系,体现基础性、时代性、典型性和可理解性等,具有亲和力、问题性、科学性、思想性、应用性、联系性等特点。必修1有三章(集合与函数概念;基本初等函数;函数的应用);必修2有四章(空间几何体;点线平面间的位置关系;直线与方程;圆与方程)。

三、教学任务

本期授课资料为必修1和必修2,必修1在期中考试前完成(约在11月5日前完成);必修2在期末考试前完成(约在12月31日前完成)。

四、教学质量目标

1、获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,体会数学思想和方法。

2、提高空间想象、抽象概括、推理论证、运算求解、数据处理等基本本事。

3、提高学生提出、分析和解决问题(包括简单的实际问题)的本事,数学表达和交流的本事,发展独立获取数学知识的本事。

4、发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出确定。

5、提高学习数学的兴趣,树立学好数学的信心,构成锲而不舍的钻研精神和科学态度。

6、具有必须的数学视野,逐步认识数学的科学价值、应用价值和文化价值,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

五、促进目标达成的重点工作

认真贯彻高中数学新课标精神,树立新的教学理念,以“双基”教学为主要资料,坚持“抓两头、带中间、整体推进”,使每个学生的数学本事都得到提高和发展。

六、相关措施:

高一作为起始年级,作为从义务阶段迈入应试征程的适应阶段,该有的是一份执着。他的特殊性就在于它的跨越性,梦想的期盼与学法的突变,难度的`加强与惰性的生成等等矛盾冲突伴随着高一新生的成长,应对新教材的我们也是边摸索边改变,树立新的教学理念,并落实在课堂教学的各个环节,才能不负众望。我们要从学生的认识水平和实际本事出发,研究学生的心理特征,做好初三与高一的衔接工作,帮忙学生解决好从初中到高中学习方法的过渡。从高一齐就注意培养学生良好的数学思维方法,良好的学习态度和学习习惯,以适应高中领悟性的学习方法。具体措施如下:

(1)注意研究学生,做好初、高中学习方法的衔接工作。

(2)集中精力打好基础,分项突破难点。所列基础知识依据课程标准设计,着眼于基础知识与重点资料,要充分重视基础知识、基本技能、基本方法的教学,为进一步的学习打好坚实的基础,切勿忙于过早的拔高,上难题。同时应放眼高中教学全局,注意高考命题中的知识要求,本事要求及新趋势,这样才能统筹安排,循序渐进,使高一的数学教学与高中教学的全局有机结合。

(3)培养学生解答考题的本事,经过例题,从形式和资料两方应对所学知识进行本事方面的分析,引导学生了解数学需要哪些本事要求。

(4)让学生经过单元考试,检测自我的实际应用本事,从而及时总结经验,找出不足,做好充分的准备

(5)抓好尖子生与后进生的辅导工作,提前展开数学奥竞选拔和数学基础辅导。

(6)重视数学应用意识及应用本事的培养。

(7)重视学生非智力因素培养,要经常性地鼓励学生,增强学生学习数学兴趣,树立勇于克服困难与战胜困难的信心。

(8)合理引入课题,由数学活动、故事、提问、师生交流等方式激发学生学习兴趣,注意从实例出发,从感性提高到理性;注意运用比较的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。

(9)加强培养学生的逻辑思维本事和解决实际问题的本事,以及培养提高学生的自学本事,养成善于分析问题的习惯,进行辨证唯物主义教育。

(10)抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的本事。

(11)自始至终贯彻教学四环节(引入、探究、例析、反馈),针对不一样的教材资料选择不一样教法,提倡创新教学方法,把学生被动理解知识转化主动学习知识。

七、教学进度安排:

(略)