《公倍数和最小公倍数》说课稿
老地方整理的《公倍数和最小公倍数》说课稿(精选4篇),希望这些优秀内容,能够帮助到大家。
《公倍数和最小公倍数》说课稿 篇1
《公倍数和最小公倍数》说课稿范文(通用10篇)
在教学工作者开展教学活动前,就难以避免地要准备说课稿,说课稿有利于教学水平的提高,有助于教研活动的开展。那么写说课稿需要注意哪些问题呢?以下是小编帮大家整理的《公倍数和最小公倍数》说课稿范文,仅供参考,欢迎大家阅读。
《公倍数和最小公倍数》说课稿 篇2
一、教学内容
《义务教育教科书数学》(人教版)五年级下册第70页例3。
二、教学目标
1、学会用公倍数和最小公倍数的知识解决生活中的实际问题,体验数学与生活的密切联系。
2、能够将生活中的实际问题转化为数学问题,提高解决问题的能力。
三、教学重难点
学会用公倍数和最小公倍数的知识解决生活中的实际问题。
四、活动设计
接下来,让我们一起走进今天的数学课堂。在学习新知识前,我们先来复习上节课的内容。
1、回顾求两个数的公倍数和最小公倍数的方法。
请你找出下列每组数的最小公倍数。6和92和148和9
第一组:找6和9的最小公倍数,可以先写出9的倍数,再从中圈出6的倍数,其中从小到大第一个圈出的就是它们的最小公倍数。
第二组:因为14是2的倍数,所以14是它们的最小公倍数。
第三组:因为8和9只有公因数1,所以两个数的积72是它们的最小公倍数。
2、教学例3。
这节课,我们一起利用求公倍数和最小公倍数的方法解决生活中的实际问题。王叔叔在装修房子时遇到了这样的问题,请你认真读一读,题目中有哪些重要的数学信息呢?(出示例3)
阅读与理解:王叔叔装修墙面用的墙砖是一个长3分米,宽2分米的长方形,要用许多块这样的长方形墙砖铺成一个正方形,而且墙砖必须用整块的,王叔叔想让我们帮着找一找,拼成的正方形的边长是多少分米?其中最小是多少分米呢?可以怎么拼呢,一起试一试。
分析与解答:横着铺两块,我们先铺一行,铺成的`图形显然不是正方形,再铺一行,也不是正方形,那么铺三行呢?铺成的图形是正方形吗?我们一起算一算,横着铺两块,它的长就是2个3,6分米,铺了这样的三行,竖着看就有3个2,它的长度也是6分米,不错,我们铺成了一个边长是6分米的正方形。
那么横着铺3块可以吗?再一起试一试,横着铺3块,它的长是9分米,铺两行宽是4分米,铺三行是6分米,铺四行是8分米,如果铺五行就是10分米,因为墙砖必须是整块的,所以不能铺成9分米的长度,也就不能铺成一个正方形。
我们还可以这么拼,横着铺4块,铺一行、铺两行,显然都不是正方形,大家想一想,铺几行才能铺成一个正方形呢?有同学说可以铺6行,大家一起算一算,铺6行是不是正方形?横着铺4块,长就是4个3,12分米,铺这样的6行,就有6个2,也是12分米,真好,我们又铺成了一个边长是12分米的正方形。
通过铺一铺,算一算,我们铺成了一个边长是6分米的正方形,我们也铺成了一个边长是12分米的正方形,相信同学们还能铺成其他很多不同的正方形,那么为什么横着铺2块和4块,都能铺成正方形,而横着铺3块却不能铺成正方形呢?请你仔细观察,试着找一找,铺成的正方形的边长与长方形墙砖之间有什么联系呢?
横着铺两块的时候,长是6分米,有2个3,我们也可以说6是3的倍数,像这样铺3行,就是6分米,有3个2,6也是2的倍数,铺出的正方形边长6分米既是3的倍数,又是2的倍数,也就是它们的公倍数。同样,12分米既是2的倍数,也是3的倍数,也就是2和3的公倍数,所以它们能铺成正方形。那么,是不是边长是2和3的公倍数就能铺成正方形,如果不是它们的公倍数就不能铺成正方形了呢?
我们一起看看,横着铺3块墙砖时的情况。横着铺3块,长9分米,是3的倍数,但不是2的倍数,所以另一条边不可能铺出9分米。因为9不是2和3的公倍数,所以不能铺成正方形。
看来只要铺成的正方形的边长是2和3的公倍数,也就是铺成的正方形的边长是长方形墙砖长与宽的公倍数的时候,就一定能铺成正方形。
2和3的公倍数有6、12、18……所以铺成的正方形的边长可以是6分米,12分米,18分米,还有很多不同边长的正方形,其中最小公倍数6分米,就是铺成的正方形的最小边长。
回顾与反思:回忆整个解决问题的过程,我们发现解决这类问题的关键是把用整块的长方形墙砖铺成正方形的问题转化成求公倍数和最小公倍数的数学问题,同学们,你们掌握了吗?
3、实际应用(练习十七5—12题、生活中的数学)
【P71—6】请你认真读一读,题目中有哪些重要的数学信息呢?李阿姨要给花浇水,月季每4天浇一次,君子兰每6天浇一次。李阿姨5月1日给月季和君子兰同时浇了水,她想让大家帮忙算一算,下一次再给这两种花同时浇水应是5月几日?同学们一定想到了,4和6的公倍数是同时浇花的间隔天数,因为是求“下一次同时浇花”,所以要取最小的间隔天数,也就是4和6的最小公倍数。4和6的最小公倍数是12,所以下一次同时给两种花浇水应是5月13日。
【P71—7】请大家先读题,找出重要的数学信息。好,我们一起来看,这些学生可以分成6人一组,也可以分成9人一组,都正好分完。说明这些学生的总人数是6和9的公倍数。又已知总人数在40以内,所以是求40以内6和9的公倍数。40以内6和9的公倍数有18、36,所以这些学生的总人数可能是18人,可能是36人。
【P72—10】接着请大家把教材翻到72页看第10题,自己先尝试独立完成,看看大家能不能将这个生活中的实际问题转化成数学问题。相信大家一定做出来了。每隔几分钟发车即每过几分钟发车,3路车每过6分钟发一次车,5路车每过8分钟发一次车,在它们同时发车后,第二次同时发车过的分钟数就是6和8的最小公倍数。因为6和8的最小公倍数是24,所以两路公共汽车过24分钟第二次同时发车。
【P72—11】请大家认真读题,解答出第1个数学问题后,再尝试提出其他数学问题并解答。我们一起来看,爸爸跑一圈用3分钟,妈妈跑一圈用4分钟,女孩跑一圈用6分钟。如果爸爸妈妈同时起跑,至少多少分钟后两人在起点再次相遇,这里的“至少”就是取最小的间隔时间,也就是求3和4的最小公倍数,3和4的最小公倍数是12,所以爸爸妈妈至少12分钟后在起点再次相遇。此时,爸爸跑了12÷3=4圈,妈妈跑了12÷4=3圈。根据题意,我们还可以提出爸爸和女孩,妈妈和女孩以及三人同时起跑,至少多少分钟再在起点相遇,此时分别跑了多少圈。请你检查一下,自己做对了吗?
【P72—12】第12题是一道带*号的选做题,让我们一起挑战一下吧!36可能是哪两个数的最小公倍数?请你先试着找一找,看看你能找出几组。
我们知道当两数成倍数关系时,较大的数就是它们的最小公倍数。所以任意一个36的因数,除36以外,与36组合,两个数的最小公倍数都是36。我们先写出36的所有因数,即1、2、3、4、6、9、12、18、36。去掉36,其他因数与36组合,可以得到8组。此外,两个数不成倍数关系的还有4组,分别是4和9,4和18,9和12,12和18。
【生活中的数学】我们一起看“生活中的数学”,用洗衣液手洗衣物时,一盆5升30摄氏度左右的温水,可以加入《最小公倍数例3》教学设计瓶盖20毫升的洗衣液调匀。相机可以用《最小公倍数例3》教学设计秒的快门速度曝光,美国科学家研制出了粗细只有头发丝的《最小公倍数例3》教学设计的太阳能电池。数学家华罗庚曾经说过:宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,日用之繁,无处不用数学。这是对数学与生活的精彩描述,课后,同学们可以继续寻找生活中与分数有关的例子,还可以寻找生活中公倍数、最小公倍数的实际应用。
4、课后作业:71页第5题、第8题,72页第9题。
这节课就上到这里,同学们,再见!
《公倍数和最小公倍数》说课稿 篇3
教学过程:
一、情景导入
1、从我们学校到中山公园可乘坐A、B两种车,A车大约每隔400米设有一个车站,B车大约每隔600米设有一个车站。天气越来越热了,我们少先队员开展送爱心活动,在这条线路上摆几个慰问点,为驾驶员、售票员送上毛巾擦擦汗、送上凉水解解渴。现在请你们小组商量一下,慰问点设在哪里可以同时慰问两条线路的司售人员,并且要说明你的理由。
2、在这里,我们找A、B两车的车站就是运用了有关倍数的知识,那么,你是否知道同时有两个车站的这几个数字表示的是什么呢?
出示课题:公倍数
谁能用自己的话说一说什么叫公倍数?
这一个是最小的,我们又称它为什么?
补充课题:最小公倍数
谁能再来说一说什么叫最小公倍数?
今天我们就来研究。
二、探究
1、看了这个课题,你想在这节课中了解些什么?请学生写在纸上,并贴到黑板上。
2、四人一组合作解决1--2个问题,举例说明,组长笔录。可以翻书请教,在P69--P71。
3、成果汇报:(由学生任选一种方法)
(1)公倍数有多少个?
(2)求最小公倍数的几种方法:
①枚举法:根据学生举例填写集合圈并说出各部分所表示的内容(参见下左图):
②分解质因数:如:12与30的最小公倍数(见上右图)
最小公倍数是两个数全部公有质因数与各自独有之因数的乘积。
[12,30]=2×3×2×5=60
从这两个分解质因数的式子里你能看出12与30的最大公约数是几?
最大公约数与最小公倍数之间有什么关系?参见下左图。
最小公倍数是两个数的最大公约数与各自独有质因数的乘积。
短除法:如求:36和45的.最小公倍数,参见上右图。
讨论:与求最大公约数比较有什么异同之处?
短除法与分解质因数有什么联系?
任选一种方法,求下列各组数的最小公倍数(第一组必做,其它可任选,看谁做的又快又多又正确):
16和20;65和130;4和15;18和24。
得出两个特殊情况:当两个数是互质数时,最小公倍数是这两个数的乘积;当两个数有倍数关系时,最小公倍数是较大的数。
4、总结:今天你们根据自己所提出的问题进行了研究学习,每个人的研究都非常成功,对于今天所学的内容还有什么疑问?
三、回家作业布置(感兴趣的同学做)
世纪大道是浦东新区最为壮观的轴线大道,它横贯陆家嘴金融贸易区,起于东方明珠电视塔,止于花木行政文化中心,全长4200米。请你当一位设计师,在大道的一旁每隔()米种一棵香樟,在大道的另一旁每隔()米种一棵银杏,那么,每()米一棵香樟和一棵银杏正好面对面,这样的情况共有()组相对的树木。
教学反思:
我们的教学是要真正地为学生服务,教师的职责不是将知识灌输给学生,而是在学生在知识的海洋中遨游时帮他们把好舵。讲台不是老师的,而是师生共同的,谁都能在这里发表自己的见解。学生只有在被肯定、被信任的时候,才能提高学习兴趣、学习动机。
《公倍数和最小公倍数》说课稿 篇4
教学目标:
理解最小公倍数的概念,理解求两个数最小公倍数的算理,掌握用短除法求最小公倍数的方法。
教学重点:最小公倍数的概念。
教学难点:两个数最小公倍数的算理。
教法:新授、小组合作、自主探究
学法:练习、自学、小组合作
课前准备:课件
教学过程:
一、定向导学(3分钟)
(一)复习
1、什么是最大公因数?
2、最大公因数与两个数的质因数之间有什么关系?
3、怎样求两个数的最大公约数?
(二)出示目标
理解最小公倍数的概念,理解求两个数最小公倍数的算理,掌握用短除法求最小公倍数的方法。
二、自主学习(6分钟)
自学内容:68-69页内容
自学方法:先独立看书,思考问题,再小组交流老师提出的问题(先从4号、3号开始回答,组长负责组织,提问,副组长负责记录,以及和老师的交流。)
自学思考:
1、什么是公倍数?最小公倍数?并背诵。
2、如何求两个数的最小公倍数?
3、两个数的公倍数和他们的最小公倍数之间有什么关系?
4、两个数有没有最大的'公倍数?为什么?
三、合作交流(15分钟)
1.最小公倍数的概念。
(1)学生先独立思考。
(2)再合作讨论自己是如何做的。
(3)全班交流。
2.小结:6,12,18,… 是 3 和 2 公有的倍数,叫做它们的公倍数。其中,6 是最小的公倍数,叫做它们的最小公倍数。
3.举例说明:求 6 和 8 的最小公倍数。
(1)学生独立完成,全班交流。
(2)学生的方法有:①列举法:先找倍数,再找公倍数,最后找出最小公倍数。
例如:6 的倍数:6,12,18,24,30,36,42,48,…
8 的倍数:8,16,24,32,40,48,…
6 和 8 公倍数:24,48,…
6 和 8 的最小公倍数:24
②大数翻倍法:8,16,24,…
6 和 8 的最小公倍数:24
③分解质因数法:
8=2×2×2 6=2×3
8 和 6 的最小公倍数包括 8 和 6 的公有质因数和各自独有的质因数。
④画图法。
4.用喜欢的方法求 12 和 15 的最小公倍数。
学生汇报。
5.用分解质因数法求 18 和 8 的最小公倍数。
四、质疑探究(4分)
求下面每组数的最小公倍数,看看有什么发现?
4 和 5 13 和 7 48 和 16 17 和 85
小结:若两数互质,两数直接相乘求最小公倍数;若两数含有倍数的关系,大数是两数的最小公倍数。
五、小结检测(6分钟)
(一)小结:谈谈你本节课的收获?
(二)检测:
1.求下面每组数的最小公倍数。
[15,9] [18,24] [18,27] [14,21]
[32,40] [25,45] [26,39] [54,63]
2.下面的说法对吗? 说一说你的理由。
(1)两个数的最小公倍数一定比这两个数都大。
(2)两个数的积一定是这两个数的公倍数。
六、堂清(6分钟)
找出下列每组数的最小公倍数。你发现了什么?
3和6 2和8 5和6 4和9 3和 9 5和10
网站导航