《完全平方公式》教学设计
老地方整理的《完全平方公式》教学设计(精选4篇),希望这些优秀内容,能够帮助到大家。
《完全平方公式》教学设计 篇1
教学目标
1、使学生理解完全平方公式的意义,弄清完全平方公式的形式和特点;使学生知道把完全平方公式反过来就可以得到相应的`.因式分解。
2、掌握运用完全平方公式分解因式的方法,能正确运用完全平方公式把多项式分解因式(直接用公式不超过两次)
教学方法:
对比发现法课型新授课教具投影仪
教师活动:
学生活动
复习巩固:
上节课我们学习了运用平方差公式分解因式,请同学们先阅读课本87—88页,看看你能有什么发现?
新课讲解:
(投影)我们把形如a2+2ab+b2与a2-2ab+b2叫做完全平方式,和平方差公式一样,我们也可以利用它把一些多项式因式分解。例如:
a2+8a+16=a2+2×4a+42=(a+4)2
a2-8a+16=a2-2×4a+42=(a-4)2
(要强调注意符号)
首先我们来试一试:(投影:牛刀小试)
1.把下列各式分解因式:
(1)x2+8x+16;(2)25a4+10a2+1
(3)(m+n)2-4(m+n)+4
(教师强调步骤的重要性,注意发现学生易错点,及时纠正)
2.把81x4-72x2y2+16y4分解因式
(本题用了两次乘法公式,难度稍大,教师要鼓励学生大胆尝试,敢于创新)
将乘法公式反过来就得到多项式因式分解的公式。运用这些公式把一个多项式分解因式的方法叫做运用公式法。
练习:第88页练一练第1、2题
《完全平方公式》教学设计 篇2
教学目标
1、知识与技能:体会公式的发现和推导过程,了解公式的几何背景,理解公式的本质,会应用公式进行简单的计算
2、过程与方法:通过让学生经历探索完全平方公式的过程,培养学生观察、发现、归纳、概括、猜想等探究创新能力,发展推理能力和有条理的表达能力,
培养学生的数形结合能力
3、情感态度价值观:体验数学活动充满着探索性和创造性,并在数学活动中获得成功的体验与喜悦,树立学习自信心
教学重难点
教学重点:
1、对公式的理解,包括它的推导过程、结构特点、语言表述(学生自己的语言)、几何解释
2、会运用公式进行简单的计算
教学难点:
1、完全平方公式的推导及其几何解释
2、完全平方公式的结构特点及其应用
教学工具
课件
教学过程
一、复习旧知、引入新知
问题1:请说出平方差公式,说说它的结构特点
问题2:平方差公式是如何推导出来的?
问题3:平方差公式可用来解决什么问题,举例说明
问题4:想一想、做一做,说出下列各式的结果
(1)(a+b)2(2)(a-b)2
(此时,教师可让学生分别说说理由,并且不直接给出正确评价,还要继续激发学生的学习兴趣)
二、创设问题情境、探究新知
一块边长为a米的正方形实验田,因需要将其边长增加b米,形成四块实验田,以种植不同的新品种
(1)四块面积分别为:
(2)两种形式表示实验田的总面积:
①整体看:边长为的大正方形,S=;
②部分看:四块面积的和,S=
总结:通过以上探索你发现了什么?
问题1:通过以上探索学习,同学们应该知道我们提出的问题4正确的结果是什么了吧?
问题2:如果还有同学不认同这个结果,我们再看下面的问题,继续探索(a+b)2表示的意义是什么?请你用多项式的.乘法法则加以验证
(教学过程中教师要有意识地提到猜想、感觉得到的不一定正确,只有再通过验证才能得出真知,但还是要鼓励学生大胆猜想,发表见解,但要验证)
问题3:你能说说(a+b)2=a2+2ab+b2
这个等式的结构特点吗?用自己的语言叙述
(结构特点:右边是二项式(两数和)的平方,右边有三项,是两数的平方和加上这两数乘积的二倍)
问题4:你能根据以上等式的结构特点说出(a-b)2等于什么吗?请你再用多项式的乘法法则加以验证
总结:我们把(a+b)2=a2+2ab+b2(a–b)2=a2–2ab+b2称为完全平方公式
问题:①这两个公式有何相同点与不同点?②你能用自己的语言叙述这两个公式吗?
语言描述:两数和(或差)的平方等于这两数的平方和加上(或减去)这两数积的2倍
强化记忆:首平方,尾平方,首尾二倍放中央,和是加来差是减
三、例题讲解,巩固新知
例1:利用完全平方公式计算
(1)(2x-3)2(2)(4x+5y)2(3)(mn-a)2
解:(2x-3)2=(2x)2-2o(2x)o3+32
=4x2-12x+9
(4x+5y)2=(4x)2+2o(4x)o(5y)+(5y)2
=16x2+40xy+25y2
(mn-a)2=(mn)2-2o(mn)oa+a2
=m2n2-2mna+a2
交流总结:运用完全平方公式计算的一般步骤
(1)确定首、尾,分别平方;
(2)确定中间系数与符号,得到结果
四、练习巩固
练习1:利用完全平方公式计算
练习2:利用完全平方公式计算
练习3:
(练习可采用多种形式,学生上黑板板演,师生共同评价,也可学生独立完成后,学生互相批改,力求使学生对公式完全掌握,如有学生出现问题,学生、教师应及时帮助)
五、变式练习
六、畅谈收获,归纳总结
1、本节课我们学习了乘法的完全平方公式
2、我们在运用公式时,要注意以下几点:
(1)公式中的字母a、b可以是任意代数式;
(2)公式的结果有三项,不要漏项和写错符号;
(3)可能出现①②这样的错误,也不要与平方差公式混在一起
七、作业设置
《完全平方公式》教学设计 篇3
学习目标:
1、会推导完全平方公式,并能用几何图形解释公式;
2、利用公式进行熟练地计算;
3、经历探索完全平方公式的推导过程,发展符号感,体会特殊一般特殊的`认知规律。
学习过程:
(一)自主探索
1、计算:(1)(a+b)2 (2)(a-b)2
2、你能用文字叙述以上的结论吗?
(二)合作交流:
你能利用下图的面积关系解释公式(a+b)2=a2+2ab+b2吗?与同学交流。
(三)试一试,我能行。
利用完全平方公式计算:
(1)(x+6)2 (2)(a+2b)2 (3)(3s-t)2
(四)巩固练习
利用完全平方公式计算:
A组:
(1)( x+ y)2 (2)(-2m+5n)2
(3)(2a+5b)2 (4)(4p-2q)2
B组:
(1)( x- y2) 2 (2)(1.2m-3n)2
(3)(- a+5b)2 (4)(- x- y)2
C组:
(1)1012 (2)542 (3)9972
(五)小结与反思
我的收获:
我的疑惑:
(六)达标检测
1、(a-b)2=a2+b2+
2、(a+2b)2=
3、如果(x+4)2=x2+kx+16,那么k=
4、计算:
(1)(3m- )2 (2)(x2-1)2
(2)(-a-b)2 (4)( s+ t)2
《完全平方公式》教学设计 篇4
教学目标
在具体情景中进一步理解完全平方公式,能正确运用完全平方公式和平方差公式进行计算.
重点、难点
根据公式的特征及问题的特征选择适当的公式计算.
教学过程
一、议一议
1.边长为(a+b)的正方形面积是多少?
2.边长分别为a、b拍的两个正方形面积和是多少?
3.你能比较(1)(2)的结果吗?说明你的理由.师生共同讨论:学生回答
(1)(a+b)
(2)a +b
(3)因为(a+b) = a +2ab+b ,所以(a+b) -(a +b )=a +2ab+b -a -b =2ab,即(1)中的正方形面积比(2)中的正方形面积大.
二、做一做
例1.利用完全平方式计算1. 102,2. 197
师:要利用完全平方公式计算,则要创设符合公式特征的两数和或两数差的平方,且计算尽可能简便.
学生活动:在练习本上演示此题.让学生叙述,
教师板书.解:1.102 =(100+2) 2.197 =(200-3) =100 +2 lOO 2+2,=200 -2 2O0 3十3,=10000+400+4 =40000-1200+9 =10404 =38809
例2.计算:1.(x-3) -x 2.(2a+b- )(2a-b+ )
师生共同分析:1中(x-3)可利用完全平方公式.
学生动笔解答第1题.教师根据学生解答情况,板书如下:解:1. (x-3) -x = x +6x+9-x =6x+9
师问:此题还有其他方法解吗?引导学生逆用平方差公式,从而培养学生创新精神.
学生活动:分小组讨论第(2)题的解法.此题学生解答,难度较大.
教师要引导学生使用加法结合律,为使用公式创造条件.学生小组交流派代表进行全班交流.
最后教师板书解题过程.解:2. (2a+b- )(2a-b+ )=[2a+(b- )][2a-(b- )]=(2a) -(b- ) =4a -(b-3b+ )=4a -b +3b-
三、试一试计算:
1.(a+b+c)
2. (a+b)
师生共同分析:
对于1要把多项式完全平方转化为二项式的完全平方,要使用加法结合律,为使用完全平方公式创造条件.如(a+b+c) =[a+(b+c)]
对于(2)可化为(a+b) =(a+b)(a+b) .
学生动笔:在练习本上解答,并与同伴交流你的做法.学生叙述,
教师板书.
解:1. (a+b+c) =[a+(b+c)] =(a+b) +2(a+b)c+ c = a +2ab+b +2ac+2bc+c = a +b +c +2ab+2ac+2bc
四、随堂练习
P38 1
五、小结
本节课进一步学习了完全平方公式,在应用此公式运算时注意以下几点.
1.使用完全平方公式首先要熟记公式和公式的特征,不能出现(a±b) = a ±b的错误,或(a±b) = a ±ab+b (漏掉2倍)等错误.
2.要能根据公式的.特征及题目的特征灵活选择适当的公式计算.
3.用加法结合律,可为使用公式创造了条件.利用了这种方法,可以把多项式的完全平方转化为二项式的完全平方.
六、作业
课本习题1.14 P38 1、2、3.
七、教后反思
网站导航