网站导航
老地方 > 百科 > 教学教案 > 正文

长方形和正方形的面积教学设计

2025/11/23教学教案

老地方整理的长方形和正方形的面积教学设计(精选5篇),希望这些优秀内容,能够帮助到大家。

长方形和正方形的面积教学设计 篇1

教学内容:北师大版三年级下册教材45—46页“摆一摆”

教学目标:

1. 知识目标:

在理解面积含义的基础上,通过1cm的小正方形测量三个不同长方形的面积,推出长方形面积的计算方法。再用同样的方法推出正方形面积的计算方法。

2. 能力目标:

掌握长方形、正方形的面积公式,能解决一些简单的实际问题。

3. 情感目标:

在探究过程中,培养学生观察、质疑和动手操作的能力,让学生体会到解决问题的方法和策略的多样性。

重、难点:

重点:长方形、正方形面积的计算方法的推导过程。

难点:运用长方形、正方形面积的计算方法解决实际问题。

教学准备:课件,长方形、正方形纸片若干张。

教学思路:

情景引入—师生互动探新—小组讨论—交流汇报—总结评价。

教学过程:

一、 情景设疑、引入新课

师:同学们,非常高兴今天又能和大家一起探讨有趣的数学问题。这节课,老师为同学们请来了两位客人。是谁呢?是两只可爱的小老虎,一只叫淘淘,另一只叫乐乐,他俩是非常要好的朋友,可有一天他们俩为了一件小事争了起来,我们一起去看看吧。淘淘说:“我的家可漂亮了,面积很大”,乐乐说“你瞎说,我的家面积比你的大”他俩谁也说服不了谁?同学们,你们愿意帮助他们解决这个问题吗?(课件出示情境图)

生互相讨论汇报。

(设计意图:通过讲故事导入新课,创设问题情境,激发学生强烈的学习和探究欲望,培养学生的创新意识)

师:同学们的这些方法都很有创意,那有没有一种简便的方法来很快得出答案呢?今天这节课我们就来探索一种计算面积的新方法来帮助淘淘和乐乐解决这个问题好吗?

揭示课题:长方形的面积

二、操作实验、探究新知

(一)探究长方形的面积计算

1、估一估:课件出示P45 “估一估”。

引导学生看书45页,让学生说一说用哪个面积单位表示这几个图形比较合适。

请学生估计一下它们的大小。

(设计意图:让学生估一估这些长方形的面积,激发了他们的学习兴趣,培养了他们的估算能力)

师:同学们估计了很多答案,怎样知道这三个长方形的准确面积是多少cm2呢?你们每个学习小组也有这样的一个长方形。根据前面学习的知识,你能知道他们的面积吗?想一想,你们有什么办法知道?学习小组可以一起讨论。

2、摆一摆:

(1)按组分任务:(一、二组摆图①、三四组摆图②、五六组摆图③),并把摆放小正方形数据填入相应的记录表中。

(2)明确操作要求(课件出示)

(3)小组交流汇报,展示小组的探究成果。

生:我们用1平方厘米的小正方形摆,摆满后再数一数,正好用了10个1平方厘米,所以它的面积是10平放厘米。

生:我们也是用1平方厘米的小正方形摆的,先横着摆,可以摆5个,再竖着摆可以摆2个,所以一共是5×2个,也就是10平方厘米。

师:两种方法哪一种更简便呢?老师也在电脑上摆一摆,同学们仔细观察然后再比一比。

4)课件演示:摆一摆的过程,让学生加深理解公式的含义。

比较方法,交流反馈:通过比较,大家都觉得用计算的方法要简便些。

(设计意图:引导学生对测量的方法进行对比,感受其优劣,体验到计算比直接测量更方便,为进一步探究面积计算方法创造条件)

5)课件演示:师生共同填写书中表格,启发学生发现规律。

师:从表格中,你发现长方形的面积与它的长和宽有什么关系吗?板书:长方形的面积=长×宽

(设计意图:学生小组合作,动手操作,填写记录表充分调动学生参与长方形面积公式推导的积极性,为学生自主探索创造了广阔的时空。同时通过学生交流,师生交流,让学生分析、比较、概括实验过程,自主地去感知、观察、发现长方形面积与长、宽的关系,让学生体验到“做“数学的乐趣)

3、量一量:

(1)用尺量出长方形的长和宽,再用长乘宽算出面积。

(2)分组量出45页三个长方形的长和宽,算出面积,反馈交流,验证结果。

4、解决问题:

师:刚才我们一起探究得出长方形的面积计算方法,现在请同学们用你学到的新知识去帮助淘淘和乐乐解决他们的问题吧。

(二)探究正方形面积的.计算

1、课件出示46页试一试。

师:想一想,正方形的面积该怎样计算呢?(板书课题:正方形的面积)先用1cm的正方形摆一摆,再算一算下面图形的面积。

2、每位同学独立试一试,小组交流结果。

3、课件演示,验证结果

师:这是一个正方形,由于正方形是特殊的长方形,所以它的面积也适用“长×宽”的计算方法。请同学们想一想:正方形的面积计算公式应该怎样说比较合适呢?

4、强调并板书:正方形的面积=边长×边长

(设计意图:鼓励学生在先前的知识经验的基础上进行推想,发展学生的思维能力)

三、灵活运用,巩固内化

(一)森林公园----闯关

师:同学们,淘淘和乐乐很感谢你们帮助他们解决了问题,邀请我们到森林公园去玩闯关游戏,闯关成功不仅有丰厚的奖品,还能获得森林公园的免费门票,想挑战吗?

(二)课件出示:

1、第一关

计算下面花圃的占地面积。(边长15米)

2、第二关

我的床长20分米,宽14分米,要铺上与床同样大的席子,这块席子的面积是多少平方分米?

3、第三关

这张桌子的面积是90平方分米,宽是6分米,长是多少?

生独立完成,集体订正。

(设计意图:利用新颖的闯关游戏,设计有层次、有新意、有挑战性的练习,让学生在练习中运用知识、内化知识,进而提高学生综合运用数学知识解决问题的能力)

四、总结评价,拓展升华

1、引导学生回顾本课学习内容,谈谈学习本课的收获。老师认为同学们这节课学的很棒!能评价一下吗?(启发学生从学习态度、学习方法等方面自评、互评)同学们的收获真不少,只要勤动手,勤思考,一定会获取更多的数学知识,同学们也会变得越来越聪明。

2、挑战自己我快乐(拓展题)

用12个边长为1厘米的正方形纸板摆长方形,你能摆出几种?

这个问题留给同学们课后去实验、去思考、去解答。

(设计意图:着眼于学生的可持续发展,拓宽学生知识面,从课内延伸到课外,提高学生思维水平,)

长方形和正方形的面积教学设计 篇2

长方形和正方形的面积教学设计

作为一位优秀的人民教师,常常要根据教学需要编写教学设计,教学设计一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。写教学设计需要注意哪些格式呢?下面是小编为大家整理的长方形和正方形的面积教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。

长方形和正方形的面积教学设计 篇3

本节课是在学生学习了长方形和正方形的周长与面积后设计的一节综合实践课。

一、教学内容:

探究当长方形周长一定时,面积的变化规律:长方形周长一定,长和宽越接近面积越大,长和宽相等时(即正方形)面积最大。

二、数学知识背景分析:

所谓的等周问题:等周定理,又称等周不等式,是一个几何中的不等式定理,说明了欧几里得平面上的封闭图形的周长以及其面积之间的关系。其中的“等周”指的是周界的长度相等。等周定理说明在周界长度相等的封闭几何形状之中,以圆形的面积最大;另一个说法是面积相等的几何形状之中,以圆形的周界长度最小。

虽然等周定理的结论早已为人所知,但要严格的证明这一点并不容易。首个严谨的数学证明直到19世纪才出现。之后,数学家们陆续给出了不同的证明,其中有不少是非常简单的。

而将图形锁定在长、正方形上就是我们今天这节课所要研究的问题。而这个问题对应的代数问题即所谓的均值定理或均值不等式:算术平均数大于几何平均数。如果我们设长为a〉0,宽为b〉0,周长C=2(a+b),面积S=ab,我们有当且仅当a=b时,等号成立。

等价于

于是当周长C一定时,a+b的和一定,所以当且仅当a=b时,即正方形面积最大,最大面积为

数学大厦中这么有趣和著名的问题居然出现在小学三年级的数学课本中,想到这些我不禁兴奋起来。作为教师我们怎么能轻易放过这样的数学教学素材,怎么能不让我们的学生亲自体验一下探究数学的乐趣,怎么能不让教师和学生一起来体验数学的美。

于是我精心设计了这节课,但问题是毕竟面对三年级的学生,讲到什么程度,怎么教,教学目标是什么等一系列问题是我下一步要认真思考的。

三、学情分析:

学生已掌握了长正方形的周长和面积计算公式的基础上进行教学的,但对于知识的`灵活运用还有待提高,三年级的学生抽象、概括能力,独立探究规律的能力也有待增强。

四、课程理念:

a+b

2≥ab(a+b2)2≥ab(a+b2)2=(C4)2

国家对教育改革发展的要求是:要鼓励学生创造性思维、着力提高学生的学习能力、实践能力、创新能力。20xx年的新课程标准将原来的双基变为了四基即:让学生获得基础知识、基本技能、基本数学思想、基本活动经验。四基是双基的继承和超越,基本活动经验获得了与基础知识、基本技能、基本数学思想、同等重要的地位。数学活动经验的积累有助于落实新课程的能力性目标、过程性目标、情感性目标的及对学生应用意识、创性能力的培养。数学活动经验的积累是学生数学素养的重要标志。因此我们要重视数学活动经验的积累。

五、教学目标:

1.探究发现长方形周长和面积的变化规律:周长一定,长和宽越接近,面积越大;长和宽相等时,面积最大。

2.在自主探索、交流、合作等活动过程中,运用画图、列表等方法,渗透有序思考和数形结合思想。积累学生从事探索规律活动的经验。

3.激发学生学习数学的兴趣,体验探索知识的乐趣,体会数学的应用价值。

六、基本流程:

引发思考—发现规律—验证规律—几何解释—应用规律

七、教学过程:

(一)故事激趣,以退为进

导入:我们来先听一个故事,故事的名字是“欧拉智改羊圈”。

欧拉是著名的数学家,他小时候,要帮助爸爸放羊。羊渐渐越来越多了,爸爸决定建造一个新的羊圈。他用尺量出了一块长方形的土地,长40米,宽15米,面积正好是(600平方米),围这样一个羊圈,需要用多长的篱笆,(15+15+40+40=110)可爸爸发现他的材料只够围100米的篱笆,不够用。正当父亲感到为难的时候,小欧拉却向父亲说:“我能用100米长的篱笆,围成一个比这个羊圈面积还大的羊圈。”

提问:你认为小欧拉的说法可行吗?预设1:围成正方形面积大。预设2:围成圆形面积最大。预设3:可以靠墙围面积大。

揭示课题:看来我们还需要进一步的来研究长、正方形的周长与面积。导语:“100米”数太大了不好研究,我们先从较小的数据入手,认识清楚了研究透了,看看有什么规律,然后再来看这个问题。

出示题目:“用16米的篱笆围成长方形或正方形,可以怎么围,面积是多少平方米?

引导学生明确问题、分析条件、提出思路、规划方案。

提问:要围成什么图形?这里的16米是什么意思?怎样围,也就是要确定长方形的什么?

强调:无论围成的是长方形,还是正方形,周长都是16米。提问:长方形的长和宽怎么确定?

小结:周长的一半是长和宽的和,因为周长一定,所以长和宽的和也是固定不变的。也就是长和宽的和是一定的。看来,我们只要确定了宽的长度,长也就知道了。

长方形和正方形的面积教学设计 篇4

教学目标:

1.推导和掌握长方形、正方形的面积公式。会应用公式正确计算长方形、正方形的面积。

2.通过观察、探究等活动,在经历推导长方形、正方形的面积计算公式的抽象过程中,感受长方形和正方形的面积计算的现实性。

3.在学习活动中获得成功的体验,培养应用意识,增强自信心。

教学重点:

推导并掌握长方形、正方形的面积公式。

教学难点:

会应用长方形、正方形的面积公式解决问题。

一、复习导入

出示长方形和正方形请同学摸一摸它们的面积。

今天我们一起探究如何计算长方形和正方形面积。

二、探究新知

1、探索长方形的面积公式

师:拿出课前研究单,先回顾昨天的研究,然后小组交流你的'想法。

小组汇报

说一说你的发现。

(每人说一个,说完一个交流一个。)

汇报的时候讲清楚为什么一行摆6个小正方形能正好摆开,因为面积是1平方厘米的小正方形边长是1厘米,就是6个小格,宽是3厘米,所以放3行,一共放18个小正方形,就是18平方厘米。瓷砖的数量也就是长方形的面积。

那么长方形的面积公式是长×宽。到底对不对呢?我们来验证看看。

课件出示

长是6厘米,宽是3厘米的长方形,用小正方形铺,数格。

长是8厘米,宽是4厘米的长方形,用小正方形铺,数格。

长是5厘米,宽是4厘米的长方形,用小正方形铺,数格。

师:看来长方形面积的计算公式就是长×宽

练一个,长是7厘米,宽是3厘米,求这个长方形的面积,长方形的面积公式是长×宽,所以,我们要先知道这个长方形的长和宽是多少,长是7厘米,宽是3厘米,那么他的面积就是长×宽=21平方厘米。

2.正方形面积的计算公式

师:同学们太厉害了,那现在注意看,我们把长方形变一变,看看发生了什么变化,这是什么图形?它的边叫什么?它的面积怎么求?

师:当边长都相等时,也就是正方形的计算公式就是边长×边长。

边长是3厘米的正方形,计算,验证。

边长是5厘米的正方形,计算,验证。

边长是7厘米的正方形,计算,验证。

三、巩固练习

1、教材第68页练习题,计算三个图形的面积(说)

2、一个长方形球场,宽是40米,长是宽的3倍,沿这个球场走一圈要走多少米?它的面积是多少平方米?

3、判断

(1)边长是1厘米的正方形,面积是4平方厘米。()

(2)长方形面积大于正方形的面积。()

(3)一个边长是4分米的正方形,周长和面积一样大。()

4、每人在卷子背面画一个长方形,画一个正方形(要取整厘米数的)请同桌互换,求它的周长和面积。

5、李爷爷家有一块正方形的菜地,一面靠墙。把这块正方形菜地围上篱笆,靠墙的一面不围,围后篱笆全长是63米。这块正方形菜地的周长是多少米?面积是多少平方米?

四、总结回顾,拓展延伸

在这一环节里,让学生说自己在这节课的收获,说说学习了这节课的知识在实际生活中有何帮助,让学生联系生活实际,能使学生深刻体会到所学知识的实用价值。

长方形和正方形的面积教学设计 篇5

教材说明

这部分教材是在学生知道面积的含义,初步认识面积单位和学会用面积单位直接量面积的基础上教学的。学生在用面积单位直接量时,体验到这样做很麻烦。因此教材开始提出能不能找到其他比较简便的方法,以引起学生思考。

教材采取引导学生自己试验、探索的方法来学习长方形面积的计算公式。让学生先用1平方厘米的小正方形量长5厘米、宽3厘米的长方形纸,在量的过程中找出长方形的面积与它边长有什么关系,从而找出长方形面积的计算公式。这样不仅有助于理解面积的含义,面积计算公式的来源,而且有助于发展学生的思维,培养学生的学习能力。

教学正方形的面积计算,则在掌握长方形面积计算的基础上完全让学生自己去推想。这样有助于培养学生迁移、类推的能力。

在练习题中,注意安排让学生实际计量的问题(如练习二十六第3、4题),这样有利于培养学生动手操作和用所学知识解决简单的实际问题的能力。练习还出现少数计算组合图形的面积的题目(如第12*题和思考题),但不作为共同要求,也不作为考试内容。

教学建议

1.这一小节可用2课时进行教学,教学长方形和正方形面积的计算,完成练习二十六的习题。

2.教学长方形面积之前,可以给每个学生准备好一张长5厘米、宽3厘米的长方形纸,20个1平方厘米的小正方形。先让学生用摆小正方形的方法,求出这个长方形的面积。启发学生同时想下面的问题:怎样能较快地确定可以摆多少个1平方厘米的小正方形?这个长方形所含的平方厘米数与它的边长有什么关系?长方形的面积该怎样计算?然后让学生在自己操作和思考的基础上对三个问题逐一进行讨论。最后教师参照课本说明:长5厘米,沿着长边一排可以摆5个1平方厘米,是5平方厘米;宽3厘米,沿着宽边可以摆3排,一共是15平方厘米。(边说边演示),可以看出,长方形包含的平方厘米数,正好等于长和宽所含厘米数的积。所以要算长方形的面积只要把长边的厘米数和宽边的厘米数乘起来。写算式时要强调正确写出面积单位平方厘米。

3.教学例题中正方形面积的计算,可以让学生联系长方形面积的计算方法推想出来。遇到学生中有不同的算法,如少数算成5×4=20(平方分米),可以引导学生讨论,这样计算对不对,为什么不对。结合正方形图使学生明确正方形每边长5分米,就想到一排摆5个1平方分米的小正方形,要摆这样5排,所以要算5×5。

4.关于练习二十六中一些习题的教学建议

做第3题时,要实际量出黑板的长和宽各是多少分米。如果遇到黑板的长和宽不是整分米,可以向学生说明量到最后不够1分米的,按四舍五入法省略。就是满5厘米的,分米数加1,不满5厘米的舍去。确定长、宽的分米数以后,再计算黑板的面积是多少。

第12题,要让学生明确这道题求的是什么,根据题目的'已知条件能否直接求出?要先算哪一步?然后让学生自己去完成。

本节的思考题,实际是求组合图形的面积。需要先分析出涂色部分与两个正方形的面积有什么关系。涂色部分可以分成左上和右下两个相同的图形,而每个图形的面积等于一个大正方形的面积减去一个小正方形的面积。每个大正方形的边长是4厘米,每个小正方形的边长从图上可以算出是4-2=2(厘米)。由此可以求出大正方形和小正方形的面积分别是16平方厘米和4平方厘米。从而算出左上部和右下部的面积各是16-4=12(平方厘米),阴影部分的面积应是12×2=24(平方厘米)。