网站导航
老地方 > 百科 > 教学教案 > 正文

余角和补角教学设计

2025/12/04教学教案

老地方整理的余角和补角教学设计(精选4篇),希望这些优秀内容,能够帮助到大家。

余角和补角教学设计 篇1

一、教学目标:

⑴在具体情景中了解余角与补角,懂得余角和补角的性质,通过练习掌握余角和补角的概念及性质,并能运用它们解决一些简单的实际问题。

⑵经历观察、操作、推理、交流等活动,发展学生的几何概念,培养学生的推理能力和表达能力。

⑶体验数学知识的发生、发展过程,敢于面对数学活动中的困难,建立学好数学的自信心。

二、教学重点、难点:

余角与补角的性质

三、教学过程:

复习、引入:

⑴复习角的定义。你知道有哪些特殊的角?

⑵用量角器量一量图中每组两个角的度数,并求出它们的和。

你有什么发现?

新课:

由学生的发现,给出余角和补角的.定义(文字叙述)。

并且用数学符号语言进行理解。

问题1:如何求一个角的余角和补角。

①∠1的余角:90°-∠1

②∠α的补角:180°-∠α

练习:填表(求一个角的余角、补角)

拓广:观察表格,你发现α的余角和α的补角有什么关系?

如何进行理论推导?

结论:α的补角比α的余角大90°

α一定是锐角

钝角没有余角,但一定有补角。

余角和补角教学设计 篇2

一、课题:

3.4.2余角和补角

二、学习目标:

㈠知识与技能:

1.在具体情境中了解余角和补角,懂得等角或同角的补角相等、等角或同角的余角相等;

2.并能运用这些性质解决一些简单的实际问题。

㈡过程与方法:

经历观察、推理、交流等活动,发展学生的图形观念,培养学生的推理能力和有条理的'表达能力。

㈢情感态度与价值观:

1.体验数学知识来源于生活,又能运用于生活,解决生活中的一些实际问题;

2.使学生体会几何图形的动态美,通过性质的推导,使学生初步领略几何逻辑推理的严密美.

三、教学重难点:

重点:互为余角、互为补角的概念及有关余角、补角的性质;

难点:有关余角和有关补角性质的`推导和运用。

四、教学方法:

演示法、观察法、小组合作与交流讨论法。

五、课时与课型:

课时:第一课时;课型:新授课。

六、教学准备:

两副三角板、投影片若干张。

七、教学设计:

㈠提出问题----从生活走向数学

㈡引入新课

要想正确解决这个问题,需要学习本节课的知识.

(板书课题)3.4.2余角和补角

㈢探究新知

1.互为余角、互为补角的定义

⑴教师用三角板演示两个角的和是90°及两个角的和是180°的情况;

⑵请你自己画出两个角的和是90°及两个角的和是180°的图形。

2.提出问题,理解定义.(投影显示)

(1)以上定义中的“互为”是什么意思?

(2)若,那么互为补角吗?

(3)互为余角、互为补角的两个角是否一定有公共顶点?

余角和补角教学设计 篇3

余角和补角教学设计(通用10篇)

作为一名优秀的教育工作者,常常需要准备教学设计,借助教学设计可以提高教学效率和教学质量。我们该怎么去写教学设计呢?下面是小编收集整理的余角和补角教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。

余角和补角教学设计 篇4

一、教学目标:

⑴在具体情景中了解余角与补角,懂得余角和补角的性质,通过练习掌握余角和补角的概念及性质,并能运用它们解决一些简单的实际问题。

⑵经历观察、操作、推理、交流等活动,发展学生的几何概念,培养学生的推理能力和表达能力。

⑶体验数学知识的发生、发展过程,敢于面对数学活动中的'困难,建立学好数学的自信心。

二、教学重点、难点:

余角与补角的性质

三、教学过程:

复习、引入

⑴复习角的定义。你知道有哪些特殊的角?

⑵用量角器量一量图中每组两个角的度数,并求出它们的和。

你有什么发现?

新课:

由学生的发现,给出余角和补角的定义(文字叙述)。

并且用数学符号语言进行理解。

问题1:如何求一个角的余角和补角。

①∠1的余角:90°-∠1

②∠α的补角:180°-∠α

练习:填表(求一个角的余角、补角)

拓广:观察表格,你发现α的余角和α的补角有什么关系?

如何进行理论推导?

结论:α的补角比α的余角大90°

α一定是锐角

钝角没有余角,但一定有补角。

问题2:①如果∠1与∠2互余,∠3与∠4互余,并且∠1=∠3,那么∠2和∠4什么关系?为什么?

(学生讨论,请一人回答)

②如果∠1与∠2互补,∠3与∠4互补,并且∠1=∠3,

那么∠2和∠4什么关系?为什么?

结论:性质:①等角的余角相等。

②等角的补角相等。

练习:看图找互余的角和互补的角,以及相等的角。

结论:直角的补角是直角。凡是直角都相等。

解决实际问题:

在长方形的台球桌面上,选择适当的角度击打白球,可以使白球经过两次反弹后将黑球直接撞入袋中。此时∠1=∠2,∠3=∠4,并且∠2+∠3=90°,∠4+∠5=90°。如果黑球与洞口的连线和台球桌面边缘的夹角∠5=40°,那么∠1应等于多少度才能保证黑球准确入袋?请说明理由。

(学生小组讨论,应用所学知识解决此问题)

小结:

⑴这节课,使我感受最深的是……

⑵这节课,我感到最困难的是……

⑶这节课,我学会了……

⑷这节课,我发现生活中……

⑸这节课,我想我将……

(学生思考作答)

作业:目标检测P64,

书P139-6(写书上),

书P147-9,10(写本上)