初中数学《正数和负数》课件
老地方整理的初中数学《正数和负数》课件(精选5篇),希望这些优秀内容,能够帮助到大家。
初中数学《正数和负数》课件 篇1
初中数学《正数和负数》课件(精选12篇)
课件是根据教学大纲的要求,经过教学目标确定,教学内容和任务分析,教学活动结构及界面设计等环节,而加以制作的课程软件。它与课程内容有着直接联系。所谓多媒体课件是根据教学大纲的要求和教学的需要,经过严格的教学设计,并以多种媒体的表现方式和超文本结构制作而成的课程软件。下面是小编整理的相关内容,希望对你有所帮助。
初中数学《正数和负数》课件 篇2
[教学目标]
1.使学生了解正数与负数是从实际需要中产生的;
2.使学生理解正数与负数的概念,并会判断一个数是正数还是负数;
3.初步会用正负数表示具有相反意义的量;
4.在负数概念的形成过程中,培养学生的观察、归纳与概括的能力。
[教学重点和难点]
负数的意义。
[课堂教学过程设计]
一、从学生原有的认知结构提出问题
大家知道,数学与数是分不开的,它是一门研究数的学问。现在我们一起来回忆一下,小学里已经学过哪些类型的数?
学生答后,教师指出:小学里学过的数可以分为三类:自然数(正整数)、分数和零(小数包括在分数之中),它们都是由于实际需要而产生的。
为了表示一个人、两只手、……,我们用到整数1,2,…。
为了表示半小时、四元八角七分、……,我们需用到分数 和小数4.87、…。
为了表示“没有人”、“没有羊”、……,我们要用到0。
但在实际生活中,还有许多量不能用上述所说的自然数,零或分数、小数表示。
二、师生共同研究形成正负数概念
某市某一天的最高温度是零上5℃,最低温度是零下5℃。要表示这两个温度,如果只用小学学过的数,都记作5℃,就不能把它们区别清楚。它们是具有相反意义的两个量。
现实生活中,像这样的相反意义的量还有很多。
例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155米,“高于”和“低于”其意义是相反的。
又如,某仓库昨天运进货物 吨,今天运出货物 吨,“运进”和“运出”,其意义是相反的。
同学们能举例子吗?
学生回答后,教师提出:怎样区别相反意义的量才好呢?
待学生思考后,请学生回答、评议、补充。
教师小结:同学们成了发明家。甲同学说,用不同颜色来区分,比如,红色5℃表示零下5℃,黑色5℃表示零上5℃;乙同学说,在数字前面加不同符号来区分,比如,△5℃表示零上5℃,×5℃表示零下5℃……。其实,中国古代数学家就曾经采用不同的颜色来区分,古时叫做“正算黑,负算赤”。如今这种方法在记账的时候还使用。所谓“赤字”,就是这样来的。
现在,数学中采用符号来区分,规定零上5℃记作+5℃(读作正5℃)或5℃,把零下5℃记作-5℃(读作负5℃)。这样,只要在小学里学过的数前面加上“+”或“-”号,就把两个相反意义的量简明地表示出来了。
让学生用同样的方法表示出前面例子中具有相反意义的量:
高于海平面8848米,记作+8848米;低于海平面155米,记作-155米;
运进货物 吨,记作 ;运出货物 吨,记作 。
……
教师讲解:什么叫做正数?什么叫做负数?强调,0既不是正数,也不是负数,它是正、负数的界限,表示“基准”的数,零不是表示“没有”,它表示一个实际存在的数量。并指出,正数、负数的“+”、“-”号是表示性质相反的量,符号写在数字前面,这种符号叫做性质符号。
三、运用举例变式练习
例 所有的正数组成正数集合,所有的负数组成负数集合。把下列各数中的
正数和负数分别填在表示正数集合和负数集合的圈里:
-11,4.8,+73,-2.7, , ,-8.12,
此例由学生口答,教师板书,注意加上省略号,说明这是因为正(负)数集合中包含所有正(负)数,而我们这里只填了其中一部分。然后,指出不仅可以用图表示集合,也可以用大括号表示集合。
课堂练习
任意写出6个正数与6个负数,并分别把它们填入相应的大括号里:
正数集合:{ …},
负数集合:{ …}。
四、小结
由于实际生活中存在着许多具有相反意义的量,因此产生了正数与负数。正
数是大于0的数,负数就是在正数前面加上“-”号的数。0既不是正数,也不是
负数,0可以表示没有,也可以表示一个实际存在的数量,如0℃。
五、作业
1.北京一月份的日平均气温大约是零下3℃,用负数表示这个温度。
2. 在小学地理图册的世界地形图上,可以看到亚洲西部地中海旁有一个死海湖周中标着-392,这表明死海的湖面与海平面相比的高度是怎样的?
3.在下列各数中,哪些是正数?哪些是负数?
-16, 0.004, , , ,25.8,
-3.6,-4,9651,-0.1。
4.如果-50元表示支出50元,那么+200元表示什么?
初中数学《正数和负数》课件 篇3
教学目标:
1、理解有理数的概念,懂得有理数的两种分类,及对一个有理数进行分类判别;
2、在数的分类中,应加强对负数的理解及对零在数分类中的特殊意义的理解。
重点:在引进负数后,能对已有的各种数进行概括,理解有理数的意义,及有理数的两种不同分类的重要意义。
难点:在对有理数的认识上,应加强对负数及零的重视,明确两者在有理数集的地位与作用。
教学过程:
一、知识导向:
通过上节课对“负数“概念的引入,通过对数范围的补充及扩大,进一步引入了有理数的概念,并对扩大后的数的范围进行重新分类。
二、新课拆析:
1、引例:(1)请学生说出负数的特征,并指出实例说明。
(2)以第(1)题中,学生所回答的数进一步分析,不同数的不同特点。
2、通过对“负数”的引入,从我们所接触的数可发现有这样几类:
正整数:如1,2,34,…
零:0
负整数:如-1,-3,-5,…
正分数:如 , , ,…
负分数:如 , ,-0.3,…
由此我们有:
概括:正整数、零和负整数统称为整数;
正分数、负分数统称为分数;
整数和分数统称为有理数。
然后根据我们的概括,我们可以对有理数进行如下的分类
分类一: 分类二:
正整数 正整数
整数 零 正有理数 正分数
有理数 负整数 有理数 零
分数 正分数 负有理数 负整数
负分数 负分数
3、有关集合的简单知识:
概括:把一些数放在一起,就组成一个数的集合,简称为数集;
所有的有理数组成的数集叫做有理数集;
所有的整数组成的数集叫做整数集;……
例:把下列各数填入表示它所在的数值的圈里:
-18, ,3.1416,0,2001, ,-0.142857,95%
正整数 负整数
整数集 有理数集
三、巩固训练: P20 ,练习:1,2,3
四、知识小结:
从有理数的分类入手,就着重于各类数的特点,特别是正,负及零的处理。
五、作业:
P20-21 习题2.1:2,3,4
初中数学《正数和负数》课件 篇4
学习目标
1、了解负数是从实际需要中产生 的;
2、能判断一个数是正数还是负数,理解数0表示的量的意义;
3、会用正负数表示实际问题中具有相反意义的量.
重点难点
重点:正、负数的概念,具有相反意义的量
难点:理解负数的概念和数0表示的量的意义
教学流程
师生活动 时间 复备标注
一、导入新课
我先向同学们做个自我介绍,我姓 ,大家可 以叫我 老师,身高 米,体重 千克,今年 岁,教 龄是年龄的 ,我将和同学们一起度过三年的初中学习生活.
老师刚才的介绍中出现了一些数,它们是些什么数呢?
[投影1~3:图1.1-1]人们由记数、排序,产生了数1,2,3……等整数;为了表示“没有”、“空位”引进了数0;测量和分配有时不能得到整数的结果,为此产生了分数和小数. 所以,数产生于人们实际生产和生活的 需要.
在生活中,仅有整数和分数够用了吗?
二、新授
1、自学章前图、第2 页,回答下列问题
数-3,3,2,-2,0,1.8%, -2.7%,这些数中 ,哪 些数与以前学习的数不同?
什么是正数,什么是负数?
归纳小结:像3、2、2.7%这样大于零的数叫做正数,像-3、-2、-2.7%这样在正数前面加上负号“-”的数叫做负数.根据需要,有时在正数前面也加上“+”(正)号,例如,+2、+0.5、+ 1/3,…,就是2、0.5、1/3,….
这样,一个数就由两部分组成,数前面的“+”、“-”号叫做它的符号,后面的部分叫做这个数的绝对值.
如数-3.2的符号是“一”号,绝对值是3.2,数5的符号是“+”号,绝对值是5.
2、自学第23页,回答下列问题
大于零的数叫做正数,在正数前面加上负号“-”的数叫做负数,那么 0是什么数呢?
0有什么意义?
归纳小结:数0既不是正数,也不是负数,它是正数和负数的分界.
0的意义已不仅仅是表示“没有”,它还可以表示一个确定的量.
3、用正负数表示具有相反意义的量:自学课本34页
有哪些相反意义的量?
请举出你所知道的相反意义的量?
“相反意义的量”有什么特征?
归纳小结:一是意义相反,二是有数量,而且是同类量.
完成3页练习
4、例题
自学例题,完成 归纳。寻找问题。
完成4页练习
三、课堂达标练习
课本第5页练习1、2、3、4、7、8.
四、课堂小结
1、到目前为止,我们学习的数有哪几种?
2、什么是正数、负数?零仅仅表示“没有”吗?
3、正数和负数起源于表示两种相反意义的量,后来正数和负数在许多方面被广泛地应用. 明确目标
初中数学《正数和负数》课件 篇5
教学目标:
1、在熟悉的生活情境中,了解负数的意义,会用负数表示一些日常生活中的问题和现象。
2、在具体的情境中,认、读、写负数,同时渗透“对应”和“集合”的数学思想。
3、培养学生获取信息,并进行分析的意识和能力。
4、进行德育渗透,培养学生科学精神和民族自豪感。
教学重点:
了解负数的意义和负数在生活中的应用。
教学难点:
理解负数的意义。
教学用具:
电脑课件、实物投影仪、温度计。
教学过程:
一、创设情境,导入新知。
同学们,这节课老师和你们一起上数学,数学和什么打交道最多?数学课离不开数,数与我们的日常生活联系得也非常密切。(边说边板书:数 数)下面老师要说些数据,请你们认真听,当一名小记录员,看谁能经过思考,将老师所说的数据信息,用你喜欢的方式准确地记录下来。能开始吗?
1、中国队参加足球比赛,上半场进了2个球,下半场输了2个球。
2、寒假开学,我校四年级转进学生7人,五年级转出学生3人。
3、小刚的妈妈卖服装,今年三月份赚了900元,四月份赔了100元。
二、探讨交流,感知新知。
(一)交流记录的数据信息,初步感受正数和负数是表示相反意义的两个量。
1、展示同学们的记录单(随机进行)
根据同学们的记录情况,启发同学进行分析,相互之间交流看法。
谁写完了,举起来让我看看(教师桌间巡视,收集相关信息。)
足球比赛
转学情况
账目结算
上半场 2 四年级 7 三月份 900 下半场
2五年级 3 四月份 100
刚才老师收集了几个同学的记录单,请你们看看,有什么想法?(不能准确地表达老师所说的意思)
看来用我们已有的知识,来记录一些数据,有时候是说明不了问题的。刚才老师说的这些信息进球和输球;转进和转出;赚和赔都是相对应的。(渗透对应的数学思想)表示相反意义的两个量。这张记录单,只把数据记了下来,没有说明情况。请看这张记录单,你觉得怎样?(请学生们交流看法)
足球比赛
转学情况
账目结算
上半场 进2个 四年级 进7人 三月份 900 下半场 输2个 五年级 出3人 四月份 100
这位同学能把前两条信息准确的记录下来,用的是什么方法?(汉字)这种方法怎么样?(麻烦)
还有不同的记录方法吗?(请同学进一步交流自己的想法,教师分别展示学生不同的记录方法。)
2、小结:你用的符号意思你明白,他用的符号意思他明白,那我们要想让大家都明白,就应该用共同的符号。(视课堂学习的情况而定,如果有用“+”、“-”就来展示一下,让同学们了解。)
3、统一记录的方法和形式看,咱们同学还有用这种方法记录的:
足球比赛
转学情况
账目结算
上半场 +2 四年级 +7 三月份 +900 下半场 -2 五年级 -3 四月份 -100
谁说说用这种方法记录好在哪儿?(能准确表达老师要说的意思,简单)
小结:这种记录方法中所用的这两个符号“+”、“-”是数学符号,(教师边说边板书:+、-)。数学符号是数学的语言,是帮助大家进行交流的。以前我们见过它,想想在哪儿见得最多?现在它们可有新的名字啦,我们管它“+”叫正号(师边说边板书:正号),跟我读:正号。它“-”叫负号(板书:负号)读:负号,人们在数学中就用这种符号来区别意义相反的量。
(二)认识正数和负数,读、写正、负数。
1、认、读正、负数。
像记录单中这个数+2,我们就读正2(板书:+2)跟我读:正2;它“-2”,读作:负2(板书:-2)跟我读:负2。
用刚才的方法,谁能读出后面的4个数?(指名读,随着生读师板书:+7,-3,+900,-100)
小结:刚才我们用正号和负号能清楚地记录数学信息,从中我们也认识了正数和负数(师板书:正、负)。
练一练:谁能说出几个正数和负数,说的完吗?正、负数是无穷多的。(渗透集合思想)用一个符号表示……(师同时板书)
课件出示:-100,+68,-1.5,+,-,36
请同学们开火车读,其他同学判断。
讨论36是什么数,介绍为了简便起见,正号可以省略不写。
猜猜看,36是正数还是负数?
告诉你,像这样的数是正数,为了简便起见,正号可以省略。同学们想一想,负号可不可以省略,为什么?(区分不开)
在学生充分发表自己的意见后,教师归纳:为了正确的区分正数和负数,负号不能省略,正号可以省略。我们已经初步的认识了正数和负数,下面老师考考大家,行吗?
2、写数,认识“0”
课件出示练习
做完后同学交流结果。
谁想把你做的结果跟大家交流一下。(学生说,教师同时用课件演示。)
重点讨论“0”的问题,让学生初步感知大于0的数是正数,小于0的数是负数,0既不是正数,也不是负数。
3、介绍负数的历史
通过以上的学习,大家已经认识了负数这个新朋友,其实对负数的认识,我们祖国有着悠久的历史,古代人在很早以前就想出了用不同方法记录正数和负数,大家想知道吗?请看大屏幕。
⑴、出示课件,请同学读上面的信息,其他同学思考:你从中知道了什么?
听了他们的介绍,你们想说些什么吗?
⑵、学生谈感受
使学生了解我国在很早以前就有使用负数的历史,从而培养学生的科学精神和民族自豪感。(进行德育渗透)
(三)寻找生活中的负数,进一步理解负数的意义。
1、从天气预报入手,感知负数的意义。
负数在我们生活中有很多的应用。请看大屏幕,这是2003年11月3日北京市气温分布图。
出示课件:找同学读一读。
谁能读出上面的气温?
区别-1℃和1℃所表示的意义,感知0是正、负数的分界点。
这个气温分布图上,有这样两个温度:-1℃和1℃,谁能说说它们有什么不同?为什么?(-1℃是零下,1℃是零上)(-1℃比1℃要冷)
小结:在通常情况下,把水结冰的温度定为0℃,把水沸腾时的温度定为100℃,100℃在0℃以上,可用正数表示,0℃以下的温度可用负数表示。由此可见,0℃很关键。
2、在温度计上找温度,体会水银柱越往上升温度越高,水银柱下降温度降低,0℃以上为正数,0℃以下为负数。
把你的温度计准备好,请你在温度计上表示出10摄氏度。(展示同学们的温度计,有两种可能,一种是10℃,另一种是-10℃)从温度计中更能看出0℃的重要性了。
(四)用直线上的点表示正、负数,并总结规律。
正数和负数还可以用直线上的点表示。(边说边演示)请看大屏幕,直线上有无数个点,我们选择其中的一个点为0点,每小格代表单位1,如果我要写正数,在0的哪边写?还可以写好些,正数都在0的右边,那0的左边就是(负数了)。
负数 正数
越来越大
-3 -2 -1 0 1 2 3
越来越小
请你观察这个图,从左向右看,你发现了什么?(从左向右数越来越大)还可以从哪边看?你又发现了什么规律?(从右向左数越来越小)从这个图中你能看出0是什么数吗?(板书:0)(0既不是正数,也不是负数)0和正、负数之间有怎样的关系?(0小于所有的正数,大于所有的负数)可以用这个符号“<”把它们连接起来吗?(同时板书:“<”)
三、走进生活,巩固新知。
负数在我们的生活中随处可见。
1、电梯中的负数(出示课件)
下面请同学看大屏幕,叔叔应该按哪个键?阿姨应该按哪个键?
2、存折上的负数。
3、方向问题(出示课件)
我们继续往下看,默读题目,谁读懂了,谁能填空?
4、课本P73例4(出示课件)
请看这幅图,我们以海平面为分界线,图中高于海平面有两点,低于海平面有哪几点?用正、负数读出图中的数据。
5、刘翔跨栏的画面(出示课件)
认识他吗?请你默读信息,思考当时赛场风速每秒-0.4米是什么意思?谁能解释一下?
四、归纳总结,质疑问难。
可见,正、负数在我们的生活中应用得很广泛,以后大家千万要留心身边的生活,在我们的日常生活中,处处都有要学的数学知识。
时间过得真快,马上就要下课了,你们过得高兴吗?说说有什么收获?
看着你们举起的手,大家都有所收获。
哪儿不明白?
我们不仅学会了知识,还学会了思考问题。下节课我们一起讨论解决大家提出的问题。
五、留心生活,完成作业。
作业:1、完成自主丛书P43 1、2、3题;
2、课后思考:还有哪些事物可以用正、负数来表示。
板书:
负数 < 0 < 正数
-2 +2 +正号
-3 +7 -负号
-100 +900
网站导航