鸡兔同笼教学设计
老地方整理的鸡兔同笼教学设计(精选4篇),希望这些优秀内容,能够帮助到大家。
鸡兔同笼教学设计 篇1
教学内容:
人教版四年级下册第九单元数学广角中—《鸡兔同笼》
教材分析:
“鸡兔同笼”问题是我国民间广为流传的数学趣题,最早出现在《孙子算经》中。教材在四年级下册数学广角中安排“鸡兔同笼”的教学内容,其教学方法与常规课不同。数学广角重在向学生渗透一些数学思想方法,并初步培养学生有顺序地、全面地思考问题的意识。因此,在教学此内容时,一方面可以培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。
学情分析:
“鸡兔同笼”问题对于四年级的学生来说是难于理解,四年级的学生已经虽然具备了应用逐一尝试法、列表法解决问题的基本能力。他们已初步接触多种解题策略,会一些基本的解决数学问题的方法。学生已初步具备一定的归纳、猜想能力,但是在数学的.应用意识与应用能力方面需要进一步培养。
教学目标:
1、使学生了解“鸡兔同笼”问题,感受古代数学问题的趣味性。
2、能尝试用不同的方法解决“鸡兔同笼”问题,使学生体会假设方法的一般性。
教学重点:会用画图法、列表法和假设法解答“鸡兔同笼”问题。
教学难点:用合理的方法解答生活中的“鸡兔同笼”问题。
教具准备:多媒体课件、表格等。
教学过程:
一、创设情境、揭示课题。
1.播放《奔跑吧,兄弟》主题曲,同学们,你们知道这是什么节目的主题曲吗?
2.播放视频,介绍:20xx年4月24日这期的《奔跑吧,兄弟》中,各位跑男被带到有密码的房间里,陈赫遇到了这样一道题。
这道题被收在《孙子算经》中,《孙子算经》是我国古代一部非常重要的数学名著,今天,我们就来研究中国历史上著名的数学趣题“鸡兔同笼问题”。(板书课题)
2、我们先从简单一些的问题入手,来探讨解决这类问题的方法,好吗?大家请看。
出示题目:鸡兔同笼一共有8个头,一共有26条腿。鸡和兔各有几只?
二、合作探究、学习新知:
活动一:探究用猜测列表法解决“鸡兔同笼”问题。
学习方式:自学教材,小组合作交流
1.师:请大家自由读题,你们都知道了什么信息?
生:鸡和兔一共有8个头。鸡兔一共有26条腿。求分别有几只?
师:还有补充吗?有两个隐藏条件看谁细心发现了?。
生:鸡有2条腿,兔子有4条腿。鸡和兔一共有8个头。鸡兔一共有26条腿。求分别有几只?师评:他还发现了隐藏条件,审题真细心。
2.先猜一猜,鸡兔可能有几只?可能只有一种动物吗,为什么?
学生猜测,汇报。不可能都是鸡,因为如果都是鸡就会有16条腿,而题目中是26条腿。也不可能都是兔,因为如果都是兔就会有32条腿。
(1)师:我们采用列表法得出的答案,好吗?翻开书104页,按照顺序列表试一试。
(2)说一说你是怎么想的?从尝试举例过程中,你发现了什么规律?和小组的同学说一说。
(汇报交流)
小结讲解:鸡兔的总只数不变,多一只兔子就会少一只鸡,并会增加两只脚;多一只鸡就会少一只兔子,并会少两只脚。
活动二:探究用假设法解决“鸡兔同笼”问题。
学习方式:自学教材,小组合作交流。
小组1:假设全都是鸡:2×8=16(条)26-16=10(条)10÷2=5(只)??兔子8-5=3(只)??鸡谁有不懂得问题要问他?你们看看是不是这样:看演示板书“假设法。”
师:除了可以假设都是鸡,还可以怎样假设呢?
小组2:引导学生说出都是兔,并演示。
师:实际上,你们刚才的这些方法都运用了一种数学思想。你们知道是什么思想么?
师:真好,你们发现了数学中一种重要的数学思想,就是假设思想。如果我们学会了用假设的数学思想啊,那我们能解决生活中的很多很多问题,是不是啊。
小结:同学们,刚才我们用很多方法解决了同一个问题,你觉得这些方法的核心思想是什么?(假设。所以鸡兔同笼问题又叫假设问题。)
3、发散思考、加深理解。
下面我们来帮陈赫找到他房间的密码,解放他吧!
出示:鸡兔同笼,有35个头,94条腿,鸡兔各有几只?
师:我们发现课本上的假设法理解起来比较抽象,现在大家换一种假设法来思考。你们看,这样行不行?
生:是什么样的假设法,让我们先睹为快!
师:是这样的,如果让每只兔子都立起两条腿,这时,鸡和兔的脚数是相等的,接下来会出现什么样的情况呢?
生:每个头有两条腿,35个头是70条腿。(94-70)少了24条腿,正好可以求出兔子的只数,24除以2等于12。
生:鸡的只数为:35-12 = 23(只)。
师:还有别的做法吗?怎样解答?
生:把每只鸡的翅膀看成是两条腿。这样每只头对应的是4条腿。共有140条腿,多出46条腿,多出的是23只鸡的腿,那么,兔的只数也可以求出来。
6、小结:现在你能从新总结一下这些方法的优势和适用范围吗?数目比较小时,用列表法。数目比较大时,列表法计算量大,就有局限性,比较麻烦,最好用假设法比较好。用假设法时要特别注意:如果假设是鸡而先求出的就是兔子,如果假设的是兔子那先求出的是鸡,两者相反。
古人是怎样解决“鸡兔同笼”问题的?
1、假如让鸡抬起一只脚,兔子抬起两只脚,还有94÷2=47只脚。
2、这时每只鸡一只脚,每只兔子两只脚。笼子里只要有一只兔子,则脚的总数就比头的总数多1。
3、这时脚的总数与头的总数之差47-35=12,就是兔子的只数。
三、巩固练习
课本105页“做一做”的1、2题。
四、课堂总结:
师:通过今天的学习,你有哪些收获?
板书设计:鸡兔同笼
化繁为简
列表法
假设法:1)假设都是鸡
2)假设都是兔
教学反思:
You can leave a response, or trackbackfrom your own site.
鸡兔同笼教学设计 篇2
鸡兔同笼教学设计优秀【11篇】
作为一位优秀的人民教师,常常要根据教学需要编写教学设计,教学设计是教育技术的组成部分,它的功能在于运用系统方法设计教学过程,使之成为一种具有操作性的程序。如何把教学设计做到重点突出呢?以下是小编整理的鸡兔同笼教学设计,欢迎大家分享。
鸡兔同笼教学设计 篇3
教学内容:
义务教育课程标准实验教科书《小学数学》六年级上册
教学目标:
1、通过学生对一些日常生活中的现象的观察与思考,从中发现一些特殊的规律。
2、通过猜测、列表、假设或方程解等方法,解决鸡兔同笼的问题。
3、通过本节课的学习,知道与鸡兔同笼有关的数学史,对学生进行数学文化的熏陶和感染。
教学重难点:假设法思想的渗透,并让学生选择合适的方法解决问题。
教学方法:引导,学生小组合作
教学准备:课件一套,练习纸
教学过程:
情境引入,旧知铺垫,引出课题1、(播放课件,画面中有2只兔子,3只鸡)
2、让学生观察课件的封面,数一数上面有多少只鸡和兔,那它们一共有多少条腿?请你动动脑筋,你能想出多少种不同的`方法?(学生小组讨论后集体汇报)
老师板书:
第一种:4×2+3×2=14(条)
第二种:4×5-2×3=14(条)
第三种:2×5+2×2=14(条)
第四种:2×7=14(条)
(学生若没说出第四种也可,关键引导学生说出第2种和第3种列式,让学生说出这样列式的算理。)
3、小结第2种和第3种列式的算法,强调其中的数学思想――假设
4、师:如果现在既不知道有多少只鸡,也不知有多少只兔,只知道鸡和兔关在了一起,告诉你有几个头,几条腿,让你求出鸡和兔分别有多少只?这样的题你遇到过吗?
(板书课题:鸡兔同笼)
二.自主探究,解决问题。
1.出示例题
师:这样有意思的题目大约在1500年前,我国古代数学家就研究了这样的问题,有同学知道吗?
生:鸡兔同笼问题。
师:就是著名的“鸡兔同笼”问题。可能有些同学在外面上奥数类的课已经学过了,如果你会你可以在小组中给其它同学提供一些帮助好吗?我相信其它同学经过自己的努力也能学好这个比较难的但又非常有意思的知识。有信心吗?
生:有。
师:从你们响亮的回答中,我感受到了大家十足的信心,那就让我们一起走进今天的课堂。
2.(课件出示例题)
笼子里有若干只鸡和兔,从上面数,有8个头,从下面数,有26条腿,鸡和兔各有多少只?
师:8个头说明了什么?
生:鸡和兔一共是8只。
师:那请你们猜猜,可能有几只鸡,几只兔呢?
(播放课件,出示“猜一猜”界面,根据学生的猜测,输入鸡和兔只数,提交答案。)并板书
师:数学上的猜测也是有一定方法的,不是胡乱地猜。有谁能够在刚才同学猜测的基础上进行调整,来更快的找到正确结果呢?
生:……(通过已经猜过的答案2个2个地调整或3个3个地调整)
师:把一只鸡换成兔腿总数会有什么变化?把一只兔变成鸡呢?
师:刚才我们通过猜一猜,列表分析数据,根据变化规律进行调整,找到了准确结果。你们会了吗?
师:想一想,如果笼子里有更多的鸡和兔。我们还用猜测法,列表法来找会怎么样?
生:比较麻烦。
师:我们还有没有其它更简单些的方法呢?答案是肯定的。
学生小组合作,探讨解决问题,老师巡视。收集学生的个例,让学生汇报,同时老师配以课件演示。(学生可能用画图的形式来解决问题,可出示图示法,若学生直接说出假设法的列式,让学生说出每一步列式的意义,教师同时板书出列式,并利用课件图示法的内容进行说明;学生讲到了方程,出示方程。)
鸡兔同笼教学设计 篇4
教学内容:
人教版课程标准实验教科书四年级下册第103-105页内容。
教学目标:
1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。
2、尝试用不同的方法解决“鸡兔同笼”问题。
3、在解决问题的过程中培养学生逻辑推理能力。
教学重点:
尝试用假设法解决“鸡兔同笼”这类问题。
教学过程:
一、课前游戏,导入课题。
二、创设情境,提出问题。
1、出示原题:
师:同学们,我们国家有着几千年的悠久文化,在我国古代更是产生了许多位数学家和许多部数学著作。《孙子算经》就是其中一部,大约产生于一千五百年前,书中记载着这样一道有名的数学趣题,让我们一起去看看吧!
(电脑出示)今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?
2、理解题意:
师:同学们,你们知道这道题的意思吗?谁愿意试着说一说!生:这道题的.意思就是:今天有鸡和兔在一个笼子里,上面有35个头,下面有94只脚,问鸡和兔各有多少只?
师:大家同意吗?
(电脑出示)笼子里有若干只鸡和兔,从上面数有35个头,从下面数有94只脚,鸡和兔各有多少只?
3、揭示课题:
师:这就是著名的‘鸡兔同笼’问题,也是这节课我们要研究的问题。
三、自主探索,解决问题
1、笼子里有若干只鸡兔。从上面数,有8个头,从下面数,有26只脚,鸡和兔各有几只?
2、分析并理解题意:
(1)从上面数,有8个头就是说鸡和兔的头一共有8个。
(2)从下面数,有26只脚就是说鸡脚和兔脚总数一共是26只脚。
(3)问题是什么?
3、猜一猜:随学生猜想板书并验证。
4、介绍列表法:
师:刚才我们是随意猜的,其实我们还可以有顺序的猜。“
小结:这种按顺序列表的方法我们称之为列表法。这样我们也就用列表法解决了这个问题。
5、介绍假设法:
当数字较大时,列表法就太麻烦了,能不能有其他更简单的方法呢?请同学们仔细观察表格,从表格中你能发现什么?小组之间交流一下。
(1)假设全是鸡:在鸡兔总只数不变的情况下,每增加一只兔减少一只鸡,脚的只数就会增加2只。同学们,想想看我们应该增加几只兔,脚的只数会变成26只脚。同学们这个过程你们能用算式表示出来吗?请同学们试着用算式表示看看。
(2)假设全是兔:先我们用假设全是鸡的办法解决了这个问题,现在假设全是兔有应该怎么分析和解决这个问题呢?同学们可以同桌边讨论边写算式?
小结:刚才通过列表法我们想到了两种算术方法。回头看看这两种方法的第一步,一个是假设全是鸡,一个假设全是兔。我们把这两种方法起个名字?板书(假设法)
6、介绍孙子算经(抬脚法)
四、课堂练习
课本做一做“龟鹤问题”
五、课堂小结
这节课你学到了什么?
板书设计
鸡兔同笼猜想法列表法假设法抬脚法
教学反思
网站导航