一元一次不等式教学设计
老地方整理的一元一次不等式教学设计(精选5篇),希望这些优秀内容,能够帮助到大家。
一元一次不等式教学设计 篇1
教材分析
本节课是在系统的学习了不等关系和不等式性质,掌握了不等式性质的基础上展开的,作为重要的基本不等式之一,为后续的学习奠定基础。要进一步了解不等式的性质及运用,研究最值问题,此时基本不等式是必不可缺的。基本不等式在知识体系中起了承上启下的作用,同时在生活及生产实际中有着广泛的应用,因此它也是对学生进行情感价值观教育的好素材,所以基本不等式应重点研究。
教学中注意用新课程理念处理教材,学生的数学学习活动不仅要接受、记忆、模仿和练习,而且要自主探索、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程。通过本节学习体会数学来源于生活,提高学习数学的乐趣。
课程目标分析
依据《新课程标准》对《不等式》学段的目标要求和学生的实际情况,特确定如下目标:
1、知识与能力目标:理解掌握基本不等式,并能运用基本不等式解决一些简单的求最值问题;理解算数平均数与几何平均数的概念,学会构造条件使用基本不等式;培养学生探究能力以及分析问题解决问题的能力。
2、过程与方法目标:按照创设情景,提出问题→剖析归纳证明→几何解释→应用(最值的求法、实际问题的解决)的过程呈现。启动观察、分析、归纳、总结、抽象概括等思维活动,培养学生的思维能力,体会数学概念的学习方法,通过运用多媒体的教学手段,引领学生主动探索基本不等式性质,体会学习数学规律的方法,体验成功的乐趣。
3、情感与态度目标:通过问题情境的设置,使学生认识到数学是从实际中来,培养学生用数学的眼光看世界,通过数学思维认知世界,从而培养学生善于思考、勤于动手的良好品质。
教学重、难点分析
重点:应用数形结合的思想理解基本不等式,并从不同角度探索基本不等式的证明过程及应用。
难点:
1、基本不等式成立时的三个限制条件(简称一正、二定、三相等);
2、利用基本不等式求解实际问题中的最大值和最小值。
教法分析
本节课采用观察——感知——抽象——归纳——探究;启发诱导、讲练结合的教学方法,以学生为主体,以基本不等式为主线,从实际问题出发,放手让学生探究思索。以现代信息技术多媒体课件作为教学辅助手段,加深学生对基本不等式的理解。
教学准备
多媒体课件、板书
教学过程
教学过程设计以问题为中心,以探究解决问题的方法为主线展开。这种安排强调过程,符合学生的认知规律,使数学教学过程成为学生对知识的再创造、再发现的过程,从而培养学生的创新意识。
具体过程安排如下:
创设情景,提出问题;
设计意图:数学教育必须基于学生的“数学现实”,现实情境问题是数学教学的平台,数学教师的任务之一就是帮助学生构造数学现实,并在此基础上发展他们的数学现实.基于此,设置如下情境:
上图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的`,颜色的明暗使它看上去像一个风车,代表中国人民热情好客。
[问]你能在这个图中找出一些相等关系或不等关系吗?
本背景意图在于利用图中相关面积间存在的数量关系,抽象出不等式。在此基础上,引导学生认识基本不等式。
二、抽象归纳:
一般地,对于任意实数a,b,有,当且仅当a=b时,等号成立。
[问]你能给出它的证明吗?
学生在黑板上板书。
特别地,当a>0,b>0时,在不等式中,以、分别代替a、b,得到什么?
设计依据:类比是学习数学的一种重要方法,此环节不仅让学生理解了基本不等式不等式的来源,突破了重点和难点,而且感受了其中的函数思想,为今后学习奠定基础.
答案:。
【归纳总结】
如果a,b都是正数,那么,当且仅当a=b时,等号成立。
我们称此不等式为基本不等式。其中称为a,b的算术平均数,称为a,b的几何平均数。
三、理解升华:
1、文字语言叙述:
两个正数的算术平均数不小于它们的几何平均数。
2、联想数列的知识理解基本不等式
已知a,b是正数,A是a,b的等差中项,G是a,b的正的等比中项,A与G有无确定的大小关系?
两个正数的等差中项不小于它们正的等比中项。
3、符号语言叙述:
若,则有,当且仅当a=b时,。
[问]怎样理解“当且仅当”?(学生小组讨论,交流看法,师生总结)
“当且仅当a=b时,等号成立”的含义是:
一元一次不等式教学设计 篇2
一、教学目标:
(一)知识与能力目标:(课件第2张)
1.体会解不等式的步骤,体会比较、转化的作用。
2.学生理解、巩固一元一次不等式的解法.
3.用数轴表示解集,加深对数形结合思想的进一步理解和掌握。
4.在解决实际问题中能够体会将文字语言转化成数学语言,学会用数学语言表示实际的数量关系。
(二)过程与方法目标:
1.介绍一元一次不等式的概念。
2.通过对一元一次方程的解法的复习和对不等式性质的利用,导入对解不等式的讨论。
3.学生体会通过综合利用不等式的概念和基本性质解不等式的方法。
4.学生将文字表达转化为数学语言,从而解决实际问题。
5.练习巩固,将本节和上节内容联系起来。
(三)情感、态度与价值目标:(课件第3张)
1.在教学过程中,学生体会数学中的比较和转化思想。
2.通过类比一元一次方程的解法,从而更好的掌握一元一次不等式的解法,树立辩证统一思想。
3.通过学生的讨论,学生进一步体会集体的作用,培养其集体合作的精神。
4.通过本节的学习,学生体会不等式解集的奇异的数学美。
二、教学重、难点:
1.掌握一元一次不等式的解法。
2.掌握解一元一次不等式的阶梯步骤,并能准确求出解集。
3.能将文字叙述转化为数学语言,从而完成对应用问题的解决。
三、教学突破:
教材中没有给出解法的一般步骤,所以在教学中要注意让学生经历将所给的不等式转化为简单不等式的过程,并通过学生的讨论交流使学生经历知识的形成和巩固过程。在解不等式的过程中,与上节课联系起来,重视将解集表示在数轴上,从而指导学生体会用数形结合的方法解决问题。在研究中,鼓励学生用多种方法求解,从而锻炼他们活跃的思维。
四、教 具:计算机辅助教学.
五、教学流程:
(一)、复习:
教学环节
教 师 活 动
学 生 活 动
设 计 意 图
导入新课
1. 给出方程:(x+4)/3=(3x-1)/2,抽学生演算。(注意步骤)
2.学生回忆不等式的性质,并说出解不等式的关键在哪里。
3. 让学生举一些不等式的例子。在学生归纳出一元一次不等式的概念后,据情况点评。
4. 新课导入:通过上节课的学习,我们已经掌握了解简单不等式的方法。这节课我们来共同探讨解一元一次不等式的方法。
1.学生练习,并说出解一元一次方程的步骤。
2.认真思考,用自己的语言描述不等式的性质,说出解不等式的关键在于将不等式化为x≤a或x≥a的形式。(出示课件第2页)
3.举出不等式的例子,从中找出一元一次不等式的例子,归纳出一元一次不等式的概念。
4.明确本课目标,进入对新课的学习。
1. 复习解一元一次方程的`解法和步骤。
2.让学生回顾性质,以加强对性质的理解、掌握。
3.运用类比思维
4.自然过度,出示课件第3、4张
(二)、新授:
教学环节
教 师 活 动
学 生 活 动
设 计 意 图
探究一元一次不等式的解法
1、 学生观察课本第61页例3 ,教师说明:解不等式就是利用不等式的三条基本性质对不等式进行变形的过程。提醒学生注意步骤。
2. 分析学生的解答,提醒学生在解不等式中常见的错误:不等式两边同乘(除)同一个负数不等号方向要改变。
3. 激励学生完成对(2) 解答,并找学生上讲台演示。
4.强调在数轴上表示解集时的关键(出示课件第8页)
5.出示练习(出示课件第9页)
6.鼓励学生讨论课本第61页的例4 。提示学生:首先将简单的文字表达转化成数学语言。(出示课件第10页)
7.指导学生归纳步骤。
8.补充适当的练习,以巩固学生所学。(出示课件第12页)
1. 类比解一元一次方程,仔细观察,理解用不等式的性质(3)解不等式的原理,并掌握用数轴表示不等式的解的方法。
2.学生类比解一元一次方程的步骤
与解一元一次不等式的一般步骤,同时完成练习。(出示课件第6页)
3.完成例3(2):2(5x+3)≤x-3(1-2x)的解答。教师提示,组内讨论后,检查自己的解答过程,弥补不足,进一步体会解一元一次不等式的方法。
4.理解、体会在数轴上表示解集的方法和关键。
5.学生组内讨论完成。
6.认真完成对例题的解答,在教师的提示下找到不等量关系,列出不等式:(x+4)/3-(3x-1)/2>1,并求解。.
7.组内讨论并归纳后,看教师所出示的课件。(出示课件第11页)
8.认真完成练习。
1.电脑逐步演示,让学生从演示过程中理解不等式的解法。(出示课件第5张)
2.巩固对一般解法的理解、掌握。
3.通过类比归纳,提高学生的自学能力。(出示课件第7页)以订正学生解答。
4.让学生明白不等式的解集是一个范围,而方程的解是一个值。
5.培养学生的扩展能力。
6.类比一元一次方程的解法以加深对一元一次不等式解法的理解。
7.通过动手、动脑使所学知识得到巩固。
8.巩固所学。
(三)、小结与巩固:
教学环节
教 师 活 动
学 生 活 动
设 计 意 图
小结与巩固
1.引导学生对本课知识进行归纳。
2.学生完成后(出示课件第13、14页)。
3.练习与巩固。
1.学生组内讨论小结,组长帮助组员对知识巩固、提升。
2.学生加强理解。
3.完成练习:书63页第4题,第5(2、4)题。
1.培养学生总结、归纳的能力。
2.点拨学生对知识的理解与掌握。
3.巩固本课所学。
一元一次不等式教学设计 篇3
教学目标:
1、了解一元一次不等式的概念。
2、能类比一元一次方程的解法步骤解一元一次不等式,并把解集在数轴上表示。
3、体会自主与合作学习的快乐,体会数学学习中类比的思想方法。
教学重点:
一元一次不等式的概念及解法步骤。
教学难点:
解一元一次不等式。
教学流程:
一:情境诱导:一件商品x元,买50件这样的商品总共花了350元,则可得一元一次方程为:。若买50件这样的商品总花费不高于350元,则可得到怎样的式子?(师问:什么叫一元一次方程,后面的这个式子是一元一次方程吗?那么这样的式子你能给起个名子吗?好,这就是咱们今天要研究的一元一次不等式!)
二:自学指导:
学生自学课本122——123页,并对照课本,找自学提纲中问题的答案;老师先做必要的板书准备,再到学生中巡视指导,了解学情,为展示归纳做准备。
附:自学提纲
1、什么叫做一元一次不等式?它有什么特征?你能举两个例子说明吗?
2、一般地,利用不等式的性质,采取与,就可以求出一元一次不等式的`解集.
3.课本上例1中
1)题解答过程有哪几个步骤
(2)题又有哪几个步骤,由此你能总结出解一元一次不等式的步骤吗?
4.议一议,解一元一次不等式和解一元一次方程有什么相同点和不同点?
三、展示归纳
1.抽有问题的学生逐题展示自学提纲中的问题答案,学生说,老师板书,
2.发动学生进行评价、补充、完善,
3.老师根据每个题目的展示情况进行必要的强调;全部展示完毕后,老师强调定义和步骤,提请注意不等式两端乘除负数不等号反向。
四、变式练习:
1题口答,不仅要说出结果,还要说出理由;
2、3题逐题出示,学生先做,教师做必要的板书准备,再到学生中巡视指导,了解学情,然后抽有问题的学生展示,学生说,老师板书,发动学生进行评价、补充、完善,老师进行必要的强调。
1、下列不等式中,哪些是一元一次不等式?(1)4<5.1(2)5x+35
2、课本124页1题(1)(2)(3)(4)3、课本124页2题,
五:课堂小结:本节课你学到的知识有哪些?你认为有哪些重点要强调,哪些易错点应注意?六:作业:七:课后延伸:生活中的不等式应用很多,有时可以帮我们解决很多困难,下节课我们继续学习。
一元一次不等式教学设计 篇4
教学目标
1、知识与技能:
(1)理解一元一次不等式组及其解集的意义;
(2)掌握一元一次不等式组的解法。
2、过程与方法:
(1)经历通过具体问题抽象出不等式组的过程,培养学生逐步形成分析问题和解决问题的能力。
(2)经历一元一次不等式组解集的探究过程,培养学生的观察能力和数形结合的思想方法,渗透类比和化归思想。
3、情感、态度与价值观:
(1)感受数形结合思想在数学学习中的作用,养成自主探究的良好学习习惯。
(2)学生在解不等式组的过程中体会用数学解决问题的直观美和简洁美。
2学情分析
本节讨论的对象是一元一次不等式组。几个一元一次不等式合在一起,就得到一元一次不等式组。从组成成员上看,一元一次不等式组是在一元一次不等式基础上发展的新概念;从组成形式上看,一元一次不等式组与第八章学习的方程组有类似之处,都是同时满足几个数量关系,所求的都是集合不等式解集的公共部分或几个方程的公共解。因此,在本节教学中应注意前面的基础,让学生借助对已学知识的认识学习新知识。
另外,本节课是在学生学习了一元一次方程、二元一次方程组和一元一次不等式之后的又一次数学建模思想学习,是今后利用一元一次不等式组解决实际问题的关键,是后续学习一元二次方程、函数的重要基础,具有承前启后的重要作用。另外,在整个学习过程中数轴起着不可替代的作用,处处渗透着数形结合的思想,这种数形结合的思想对学生今后学习数学有着重要的影响。
3重点难点
1、教学重点:对一元一次不等式组解集的认识及其解法。
2、教学难点:对一元一次不等式组解集的认识及确定。
3、教学关键:利用数轴确定不等式组中各个不等式解集的公共部分。
4教学过程4.1第一学时教学活动活动1【导入】温故知新
教师提问:
1、什么是一元一次不等式?
2、什么是一元一次不等式的解集?
3、如何求一元一次不等式的解集?
针对性练习:
(设计意图:检验学生是否理解和掌握一元一次不等式的相关概念,为本节新课内容的学习做好铺垫。同时对解不等式中的相关要点加以强调:①解不等式中,系数化为1时不等号的方向是否要改变;②在数轴上表示解集时“实心圆点”和“空心圆圈”的选择;③要正确理解利用数轴表示出来的不等式解集的几何意义。)
活动2【讲授】创设问题情景,探索新知
1、问题(课本第127页):用每分钟可抽30 t水的抽水机来抽污水管道里积存的污水,估计积存的污水
超过1 200 t而不足1 500 t,那么将污水抽完所用时间的范围是什么?
(设计意图:结合生活实例,让学生经历通过具体问题抽象出不等式组的过程,即经历知识的拓展过程,让学生体会到数学学习的内容是现实的、有意义的、富有挑战性的。)
2、引导学生找出问题中“积存的污水”需同时满足的两个不等关系:
超过1 200 t和不足1 500 t。
3、问题1:如何用数学式子表示这两个不等关系?
1)引导学生一起把这个实际问题转换为数学模型:
满足一个不等关系我们可列一个不等式,满足两个不等关系可以列出两个不等式。
设用x min将污水抽完,则x需同时满足以下两个不等式:
30x>1200, ①
30x<1500 ②
2)教师归纳一元一次不等式组的意义:
由于未知数x需同时满足上述两个不等式,那么类似于方程组,我们把这样两个不等式合起来,就组成一个一元一次不等式组。
(设计意图:把实际问题转换为数学模型,同时让学生根据一元一次不等式和二元一次方程组的有关概念来类推一元一次不等式组的'有关概念,渗透类比和化归思想。)
4、问题2:怎样确定不等式组中既满足不等式①同时又满足不等式②的x的可取值范围?
1)教师分析:对于一元一次不等式组来说,组成不等式组的每一个不等式中都只含有一个未知数,
运用前面解一元一次不等式的知识,我们就能直接求出不等式组中的每一个一元一次不等式的解集。
2)得到解不等式组的第一个步骤:分别直接求出这两个不等式的解集。学生自行求解:
由不等式①,解得x>40
由不等式②,解得x<50
3)教师引导学生根据题意,容易得到:在这两个解集中,由于未知数x既要满足x>40,也要同时满足x40和x<50这两个解集的公共部分,就是不等式组中x可以取值的范围。
(设计意图:让学生在教师的引导下探究不等式组的解集及其解法,养成自主探究的良好学习习惯。)
5、问题3:如何求得这两个解集的公共部分?
学生活动:将不等式①和②的解集在同一条数轴上分别表示出来。
(设计意图:启发学生可利用数轴的直观性帮助我们寻找这两个不等式解集的公共部分。)
教师活动:利用多媒体课件,用三种不同形式表示这两个解集,帮助学生求得这个公共部分。
(设计意图:结合介绍利用数轴确定公共部分的三种不同形式,突破本节课的难点,培养学生的观察能力和数形结合的思想方法。)
形式一:用两种不同颜色表示这两个解集
1)通过设置以下几个问题,要求学生通过观察、分组讨论、取值验证,自主得出结论。
(1)这两种颜色把数轴分成几个部分?
(2)每一个部分分别表示哪些数?
(3) 请每一小组的同学从这几个部分中各取2~3个数,分别代入两个不等式中,同时思考:哪部分的数既满足不等式①同时又满足不等式②?
2)学生通过自主探究、合作交流,得到这3个问题的正确答案。
3)得出结论:
只有红色和蓝色重叠的部分才既满足不等式①又同时满足不等式②。因此,红色和蓝色重叠的部分就是我们要找的x的可取值范围。
4)教师提问:两个不等式解集的界点:即实数40、50所在的点是否落在红色和蓝色重叠的部分?教师引导学生利用学过的验证法进行验证,并得出结论:两个界点没有落在红色和蓝色重叠的部分。
(设计意图:让学生对一系列的问题进行自主分析和解答,充分调动学生学习的主动性和积极性。同时在上述过程中,利用不同颜色的直观性,目的在于能让学生更清楚地找出不等式①和不等式②解集的公共部分。)
形式二:利用画斜线的方式:用两种不同方向的斜线分别画出x>40和x<50这两个部分的解集。
类似地,引导学生得出结论:两个解集的公共部分,就是图中两种不同方向斜线重叠的部分,从而得出结论。
形式三:结合课本,利用两条横线都经过的部分来确定两个解集的公共部分。
(设计意图:介绍不同的形式,让学生再一次鲜明、直观地体会:x的可取值范围是两个不等式解集的公共部分;进一步培养学生的观察能力和数形结合的思想方法。)
6、问题4:如何表示这个可取值范围?
教师分析:在数轴上,未知数x落在实数40和50之间。而我们知道,数轴上的实数,它们从左到右的顺序,就是从小到大的顺序。因此,我们可将这三个数先按从小到大的顺序书写出来,再用小于号依次进行连接,记为40 7、小结并解决课本问题:原不等式组中x的取值范围为40 (设计意图:首尾呼应,完成了实际问题的研究,通过这个研究过程,让学生进行感悟、归纳、领会知识的真谛。) 8、同时,类比一元一次不等式解集的几何意义,教师再次进行归纳: 在数轴上,若在40 一般地,几个不等式的解集的公共部分,叫做由它们所组成的不等式组的解集。解不等式组就是求它的解集。 9、结合上述学习过程,让学生和教师一起归纳解一元一次不等式组的步骤: (1)分别求出不等式组中各个不等式的解集; (2)把这些解集分别在同一条数轴上表示出来; (3)确定各个不等式解集的公共部分; (4)写出不等式组的解集。 (设计意图:及时进行小结,使学生对所学知识更加的系统化。) 教学目标: (知识与技能,过程与方法,情感态度价值观) (一)教学知识点 1.一元一次不等式与一次函数的关系. 2.会根据题意列出函数关系式,画出函数图象,并利用不等关系进行比较. (二)能力训练要求 1.通过一元一次不等式与一次函数的图象之间的结合,培养学生的数形结合意识. 2.训练大家能利用数学知识去解决实际问题的能力. (三)情感与价值观要求 体验数、图形是有效地描述现实世界的重要手段,认识到数学是解决问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用. 教学重点 了解一元一次不等式与一次函数之间的关系. 教学难点 自己根据题意列函数关系式,并能把函数关系式与一元一次不等式联系起来作答. 教学过程 创设情境,导入课题,展示教学目标 1.张大爷买了一个手机,想办理一张电话卡,开米广场移动通讯公司业务员对张大爷介绍说:移动通讯公司开设了两种有关神州行的通讯业务:甲类使用者先缴15元基础费,然后每通话1分钟付话费0.2元;乙类不交月基础费,每通话1分钟付话费0.3元。你能帮帮张大爷选择一种电话卡吗? 2.展示学习目标: (1)、理解一次函数图象与一元一次不等式的关系。 (2)、能够用图像法解一元一次不等式。 (3)、理解两种方法的关系,会选择适当的方法解一元一次不等式。 积极思考,尝试回答问题,导出本节课题。 阅读学习目标,明确探究方向。 从生活实例出发,引起学生的.好奇心,激发学生学习兴趣 学生自主研学 指出探究方向,巡回指导学生,答疑解惑 探究一:一元一次不等式与一次函数的关系。 问题1:结合函数y=2x-5的图象,观察图象回答下列问题: (1) x取何值时,2x-5=0? (2) x取哪些值时, 2x-5>0? (3) x取哪些值时, 2x-5<0? (4) x取哪些值时, 2x-5>3? 问题2:如果y=-2x-5,那么当x取何值时,y>0 ? 当x取何值时,y<1 ? 你是怎样求解的?与同伴交流 让每个学生都投入到探究中来养成自主学习习惯 小组合作互学 巡回每个小组之间,鼓励学生用不同方法进行尝试,寻找最佳方案。答疑展示中存在的问题。 探究二:一元一次不等式与一次函数关系的简单应用。 问题3.兄弟俩赛跑,哥哥先让弟弟跑9 m,然后自己才开始跑,已知弟弟每秒跑3 m,哥哥每秒跑4 m,列出函数关系式,画出函数图象,观察图象回答下列问题: (1)何时哥哥分追上弟弟? (2)何时弟弟跑在哥哥前面? (3)何时哥哥跑在弟弟前面? (4)谁先跑过20 m?谁先跑过100 m? 你是怎样求解的?与同伴交流。 问题4:已知y1=-x+3,y2=3x-4,当x取何值时,y1>y2?你是怎样做的?与同伴交流. 让学生体会数形结合的魅力所在。理解函数和不等式的联系。 精讲点拨 移动通讯公司开设了两种长途通讯业务:全球通使用者先缴50元基础费,然后每通话1分钟付话费0.4元;神州行不交月基础费,每通话1分钟付话费0.6元。若设一个月内通话x分钟,两种通讯方式的费用分别为y1元和y2元,那么 (1)写出y1、y2与x之间的函数关系式; (2)在同一直角坐标系中画出两函数的图象;(3)求出或寻求出一个月内通话多少分钟,两种通讯方式费用相同; (4)若某人预计一个月内使用话费200元,应选择哪种通讯方式较合算? 在共同探究的过程中加强理解,体会数学在生活中的重大应用,进行能力提升。 提高学生应用数学知识解决实际问题的能力 达标检测 展示检测内容 积极完成导学案上的检测内容,相互点评。 反馈学生学习效果 知识与收获 引导学生归纳探究内容 学生回顾总结学习收获,交流学习心得。 学会归纳与总结 布置作业 教材P51.习题2.6知识技能1;问题解决2,3. 板书设计 §2.5 一元一次不等式与一次函数(一) 一、学习与探究: 1.一元一次不等式与一次函数之间的关系; 2.做一做(根据函数图象求不等式); 3.试一试(当x取何值时,y>0); 4.议一议 二、精讲点拨: 三、知识与收获: 四、课后作业:一元一次不等式教学设计 篇5
网站导航