网站导航
老地方 > 百科 > 教学教案 > 正文

《最小公倍数》教学设计

2025/12/30教学教案

老地方整理的《最小公倍数》教学设计(精选4篇),希望这些优秀内容,能够帮助到大家。

《最小公倍数》教学设计 篇1

教学目标

知识与技能:

1、通过看微视频,能掌握公倍数、最小公倍数两个概念。

2、能理解求最小公倍数的算理,掌握求最小公倍数的方法。

过程与方法:在观看微视频过程中,初步掌握求两个数的最小公倍数的方法。

情感、态度与价值观:培养学生观察能力,独立思考能力和抽象概括的能力。

教学重点:

理解公倍数、最小公倍数的概念。

教学难点:

初步掌握求两个数的最小公倍数的方法。

教学准备:

微视频、课件。

教学过程:

一、谈话导入。

今天,我们请来一位新老师来给大家上课。

二、新课教学

1、播放微视频。

(1)2、4的倍数有:4、8、12、16、20、24、28、36……

6的倍数有:6、12、18、24、28、32、36……

(2)你发现了什么?

(3)什么是公倍数?什么是最小公倍数?

(4)想一想,两个数有没有最大公倍数?

(5)例2:怎样求6和8的最小公倍数?(学生思考方法)你们都有什么好的.办法吗?

学生先尝试独立思考,用列举法先独立完成,完成后,在小组内交流、讨论。

微视频介绍筛选法。

(6)小组合作完成后做一做,发现规律,总结方法。

2、同学们,你们学会了吗?今天你学会了什么,主要学习了什么内容?(板书课题:最小公倍数),你学会了有关公倍数的哪些内容?

小组内交流,说一说。

汇报结果:几个数公有的倍数,叫做这几个数的公倍数;其中,公倍数中最小的一个,叫做这几个数的最小公倍数。互质关系,最小公倍数是两个数的乘积,倍数关系,最小公倍数是较大一个数。(板书)

三、课堂练习

1、填一填。

2、找一找。

3、求下列每组数的最小公倍数(口答)

4、教材练习十七第1题。

5、练习十七第7题。

6、练习十七第2题。

四、课堂小结今天你有什么收获?

五、作业

练习十七第5题。

六、板书设计

最小公倍数

几个数公有的倍数叫做它们的公倍数;公倍数中最小的一个叫做最小公倍数。

两个数成互质关系,最小公倍数是两个数的乘积,两个数成倍数关系,最小公倍数是较大一个数。

《最小公倍数》教学设计 篇2

教学内容:

五年级下册P22—24内容教学目标:1、在解决问题的操作活动中,认识公倍数和最小公倍数,会在集合图中分别表示两个数独有的倍数和它们的公倍数。2、探索两个数的公倍数、最小公倍数的方法,能用列举法找到10以内的两个数的公倍数和最小公倍数,并能在解决问题的过程中主动探索简捷的方法,进行有条理的思考。3、在自主探索与合作交流活动中,进一步发展与同伴进行合作交流的意识与能力,获得成功体验,学会欣赏他人。

教学过程:

一、解决问题:

1、呈现问题:

(1)猜一猜用长3cm、宽2cm的长方形纸片分别铺边长为6厘米和8厘米的两个正方形。可以正好铺满哪个正方形?

学生说猜想结果和想法。

(2)实践验证:

请小组拿出小长方形和画有正方形的纸,动手铺一铺。

(3)反馈交流:

A肯定:哪个正方形正好铺满?B质疑:为什么边长12cm的正方形能正好铺满,而边长16厘米的正方形不能正好铺满呢?C交流:结合学生思路板书有关算式D我们发现:6cm既是2的倍数,又是3的倍数,所以能正好铺满,8cm虽是2的倍数,但不是3的倍数,所以不能正好铺满。

(4)深入探索:

这样的长方形纸片还能正好铺满边长是多少厘米的正方形呢?

(5)反馈交流:

A板书数据:6、12、18、24……

B说理:为什么这些边长的正方形也都能正好铺满?你能举其中一个例子来说一说吗?其中最小的边长是6厘米,能找到比6厘米更小的边长吗?

C小结:我们发现,能正好铺满的正方形,边长的厘米数既是2的倍数,又是3的倍数。

2、揭示概念

(1)揭示:6、12、18、24……既是2的倍数,又是3的倍数,它们是2和3的公倍数。(2)提问:A2和3的公倍数中的……表示什么意思呢?揭示:2和3的公倍数的个数是无限的。B2和3的公倍数中,谁是最小的?有没有比6更小的了呢?揭示:2和3的最小公倍数是6。

(3)辨析:16是2和3的公倍数吗?为什么?

二、探索方法,优化策略。

同学们,我们知道了什么是公倍数、最小公倍数,下面让我们一起来找一找两个数的最小公倍数,不过要同学们自己来探索,自己来寻找方法,有信心吗?

1、呈现例26和9的公倍数有哪些?其中最小的公倍数是几?

2、学生探索先独立思考,再小组交流,比一比,哪个组想的方法多,想得方法好。

3、反馈呈现多种方法

方法一:列举法分别求6和9的'倍数,再找公倍数、最小公倍数。

方法二:先找出6的倍数,再从6的倍数中找出9的倍数

方法三:先找出9的倍数,再从9的倍数中找出6的倍数

可能出现方法四:先找到最小公倍数,再找出最小公倍数的倍数。

4、评价方法:

方法一与方法二、方法三比,你有什么想法?方法二与方法三比,你有什么想法?方法四不失为一种好方法,但要找到最小公倍数,我们通常要用到前面几种方法来找最小公倍数。

5、出示集合图。

6、小结:通过同学们积极思考,大胆交流,我们找到了多种方法来求公倍数、最小公倍数,在解决问题时,我们可以选用自己喜欢的方法来解决问题。

三、综合练习,拓展提升。

1、完成练一练

2、完成练习四1——4

3、比一比,看谁找得快,找出下列每组数的最小公倍数。8和25和73和910和45和109和104和81和54和54

四、全课总结,畅谈收获。

五、解决实际问题(见小小设计师)

药物研究所研究出一种新药,经临床试验成功后决定向市场推广,这种药成人每天吃2次,每次2片,一天一共吃4片;儿童每天吃3次,每次1片,一天一共吃3片;如果你是药厂包装设计师,每一版药你认为设计多少颗比较合理,说说你的理由。

教学反思:

本课内容是学生四年级学习的延续,在四年级(下册)教材里,学生已经建立了倍数和因数的概念,会找10以内自然数的倍数,100以内自然数的因数。这课教学公倍数和最小公倍数,要学生理解公倍数和最小公倍数的意义,学会找两个数的公倍数和最小公倍数的方法,为后面学习公因数、最大公因数的意义,会求公因数、最大公因数的方法,进行通分、约分和分数四则计算作充分全面的准备。作为全新的课改内容,本课教材编排与旧教材相比,改革的力度较大,体现了浓郁的课改气息,具体体现在以下几方面:

1、润物细无声:在解决实际问题中理解概念。用长3厘米宽2厘米的小长方形去铺边长分别是6厘米、8厘米的正方形,哪个能正好铺满?教材以学生喜欢的操作情景入手,激发学生探索的欲望,在探索中生成问题:怎样的正方形肯定能正好铺满?怎样的不行?像这样能正好铺满的正方形还能找到吗?引发学生深入探索,在充分探索观察的基础上发现:能正好铺满的正方形的边长正好既是小长方形长的倍数,又是宽的倍数。这时引入公倍数的概念自然是水到渠成,学生觉得很自然、亲切,觉得解决的问题是有价值的,公倍数的概念也是现实的、有意义的鲜活概念。

2、多样呈精彩:在找两个数的公倍数和最小公倍数的时候,采用全开放的方式,放大学生思维空间让学生自由探索,以小组交流形成思维碰撞,呈现多彩的智慧。以评价促方法的对比,以评价促思维的深入,以评价促探索精神的提升,学生自然自得其乐,收获多多。

3、适度显睿智。在练习部分,教材能尊重学生的思维差异,能尊重学生的心理需求,让学生选用喜欢的方法去解决问题,这是适度体现的其一。其二对求两个数的公倍数、最小公倍数,教材抛弃了短除法的方法,而只要学生找10以内数的公倍数、最小公倍数,降低了学习要求,更符合学生实际。

《最小公倍数》教学设计 篇3

教学内容:

教科书第22-23页的例1、例2和“练一练”,练习四的第1-4题。

教学目标:

1、 使学生在具体的操作活动中,认识公倍数和最小公倍数,会在集合图中分别表示两个数的倍数和它们的公倍数。

2、 使学生学会用列举的方法找到10以内两个数的公倍数和最小公倍数,并能在解决问题的过程中主动探索简捷的方法,进行有条理的思考。

3、 使学生在自主探索与合作交流的过程中,进一步发展与同伴进行合作交流的意识和能力,获得成功的体验。

教学重点:

认识公倍数和最小公倍数。

教学难点:

掌握找到10以内两个数的公倍数和最小公倍数的方法。

教学准备:

长3厘米、宽2厘米的长方形纸片,边长6厘米、8厘米的正方形纸片;练习四第4题里的方格图、红旗和黄旗。

教学过程:

一、经历操作活动,认识公倍数

1、操作活动。

提问:用长3厘米、宽2厘米的长方形纸片分别铺边长6厘米、8厘米的

正方形,能铺满哪个正方形?拿出手中的图形,动手拼一拼。

学生独立活动后指名在实物展示台上铺一铺。

提问:通过刚才的活动,你们发现了什么?

引导:⑴用长3厘米、宽2厘米的.长方形纸片铺边长6厘米的正方形,每

条边各铺了几次?怎样用算式表示?

⑵铺边长8厘米的正方形呢?每条边都能正好铺满吗?

2、想像延伸。

提问:根据刚才铺正方形的过程,在头脑里想一想,用3厘米、宽2厘米

的长方形纸片正好铺满边长多少厘米的正方形?在小组里交流。

4、 揭示概念。

讲述:6、12、18、24……既是2的倍数,又是3的倍数,它们是2和3的

公倍数。

说明:因为一个数的倍数的个数是无限的,所以两个数的公倍数的个数也

是无限的,同样可以用省略号表示。

引导:用3厘米、宽2厘米的长方形纸片不能正好铺满边长8厘米的正方

形,说明什么?为什么?

二、自主探索,用列举的方法求公倍数和最小公倍数

1、 自主探索。

提问:6和9的公倍数有哪些?其中最小的公倍数是几?你能试着找一找吗?

学生自主活动,在小组里交流。可能的方法有:

① 依次分别写出6和9的公倍数,再找一找。

提问:你是怎样找到6和9的公倍数的?又是怎样确定6和9的最小

公倍数的?

② 先找出6的倍数,再从6的倍数中找出9的倍数。

③ 先找出9的倍数,再从9的倍数中找出6的倍数。

引导:②和③有什么相同的地方?哪一种方法简捷些?

2、 明确6和9的公倍数中最小的一个是18,指出:18就是6和9的最

小公倍数。

3、 用集合图表示。

指导学生填集合图后,引导:12是6和9的公倍数吗?为什么?27呢?哪几个数是6和9的公倍数?

4、 完成“练一练”

完成后交流:2和5的公倍数有什么特点?

三、巩固练习,加深对公倍数和最小公倍数的认识

1、 练习四第1题。

提问:这里在图中要写省略号吗?为什么?如果没有“50以内”这个

前提呢?

2、 练习四第2题。

引导:4与一个数的乘积都是4的什么数?5、6与一个数的乘积呢?怎样找到4和5的公倍数?填空时为什么要写省略号?

3、 练习四第3题。

集体交流时说说是怎样找的。

四、全课小结

提问:今天学习的是什么内容?什么是两个数的公倍数和最小公倍数?怎样找两个数的最小公倍数?

引导:你还有什么疑问?

五、游戏活动

练习四第4题。让学生在小组里玩一玩,再想一想。

提问:涂色的方格里写的数与3和4有什么关系?

《最小公倍数》教学设计 篇4

一、片段一:故事引入

师:从前,在美丽的太湖边上有一个小渔村,村里住着一老一少两个渔夫。有一年,他们从4月1日起开始打鱼 ,并且每个人都给自己订了一条规矩。老渔夫说:“我连续打3天要休息一天。”年轻渔夫说:“我连续打5天要休息一天。”有一位远路的朋友想趁他们一起休息的日子去看看他们,拉拉家常,叙叙旧,同时想享受一次新鲜美味的“太湖鱼宴”。可他不知道选哪个日子去才能同时碰到他俩,你会帮他选一选吗?

学生尝试着寻找日子,有的一边想一边在纸上写,有的直接在课前发的日历纸上圈圈画画,有的在交头接耳……过了会儿,有几个学生露出了高兴的神情,但大多数学生显然还没有选出日子。

师:看来选准日子,还得讲究一些方法。老师给你们提个建议,同桌两个同学能否先分一下工,一个同学找老渔夫的休息日,另一个同学找年轻渔夫的休息日,然后再把两人找的日子合起来对照一下,这样试试?

先让学生独立思考,尝试解决,初步感受问题的挑战性,产生与他人合作的心理需求,教师再启发学生进行有序思考和分工合作,引导学生选出日子,并进行了交流。教师根据学生的回答逐步板书:

老渔夫的休息日:4、8、12、16、20、24、28

年轻渔夫的休息日:6、12、18、24、30

他们共同的休息日:12、24

其中最早的一天:12

二、片段二:探究提升

师:我们进一步来探究上面这些数中的学问。先看老渔夫的休息日,把这些数读一读,你会有一些发现吗?(学生读后相继交流)

生1:我发现这些数都是双数。

生2:我发现每两个数之间相差4。

生3:我发现后一个数比前一个数多4。

生4:我发现这些数都是4的倍数。

师:对了,这些数都是4的倍数,把他们从小到大排在一起,就有了你们刚才找到的规律。(教师把板书中的“老渔夫的休息日”擦去,改写成了“4的倍数”。)

师:我们刚才在30以内的数中,找到了这些4的倍数,现在老师要求继续找下去,30以外的数中,4的倍数还有吗?有多少个?

生5:32,36,40,44,48,…

(学生举例,教师在“4、8、12、16、20、24、28”的后面添上“32、36、…”。)

(学生用同样的方法探究了“6的倍数”。)

师:(手指着“12、24”)下面我们来研究两位渔夫共同的休息日,这些数和4与6有什么关系吗?

生6:这些数既是4的倍数,又是6的倍数。

生7:这些数是4和6共同的倍数。

生8:这些数是4和6公有的倍数。

生9:这些数是4和6的公倍数。

师:对了,4和6公有的倍数我们就把它叫做4和6的.公倍数。(教师把板书中的“他们共同的休息日”擦去,改写成了“4和6的公倍数。

生9:这些数是4和6的公倍数。

师:对了,4和6公有的倍数我们就把它叫做4和6的公倍数。(教师把板书中的“他们共同的休息日”擦去,改写成了“4和6的公倍数”。)

师:刚才我们从30以内的数中找出了4和6的公倍数12、24,如果继续找下去,还能找出一些来吗?

生10:36、48、60、72…

(学生举例,教师在“12、24”的后面添上“36、48,…”。)

师:(手指着“12”)请同学们想,这“其中最早的一天”是不是4和6的公倍数中最小的一个数呢,而在4和6的公倍数中能否找到最大的一个呢?

(通过交流,学生肯定“12”是4和6的公倍数中最小的一个,找不出最大的一个。)

师:公倍数中最小的一个,你们给它起个名字,该叫什么呢?

生:最小公倍数(好多学生几乎是脱口而出)。

(教师把“其中最早的一天”改为“4和6的最小公倍数”)

三、片段三:反思归纳

师:通过找“共同的休息日”这个活动,同学们分别求出了几组数的公倍数和最小公倍数。那么现在谁能用自己的话说一说,什么叫做公倍数?什么叫做最小公倍数?

生1:两个数公有的倍数就叫做这两个数的公倍数,其中最小的一个就叫做这两个数的最小公倍数。

生2:三个数公有的倍数就叫做这三个数的公倍数,其中最小的一个就叫做这三个数的最小公倍数。

生3:两个数、三个数都有公倍数和最小公倍数,我想四个数、五个数甚至更多的数也有吧。

(最终,在生生交流和师生的交流中,学生概括出“几个数公有的倍数就叫做这几个数的公倍数,其中最小的一个就叫做这几个数的最小公倍数”。)

师:想一想上面找“共同的休息日”的过程,说一说我们可以怎样来求几个数的最小公倍数。

生4:先找出每一个数的倍数,再找出公有的倍数。就可找出这几个数的最小公倍数了。

(学生交流各自的想法,互作补充和修改,最后在教师的引导下,逐步归纳出了方法:一找倍数:从小到大依次找出各个数的倍数;二找公有:对比各个数的倍数找出公有的倍数;三找最小:从公有的倍数中找出最小的一个。)