网站导航
老地方 > 百科 > 教学教案 > 正文

《鸽巢问题》教学设计

2026/01/01教学教案

老地方整理的《鸽巢问题》教学设计(精选4篇),希望这些优秀内容,能够帮助到大家。

《鸽巢问题》教学设计 篇1

《鸽巢问题》教学设计【优秀】

作为一名专为他人授业解惑的人民教师,编写教学设计是必不可少的,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。怎样写教学设计才更能起到其作用呢?以下是小编帮大家整理的《鸽巢问题》教学设计,希望能够帮助到大家。

《鸽巢问题》教学设计 篇2

教学内容

人教版教材小学数学六年级第十二册“数学广角”例1及相关内容。

教学目标

(1)经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”,会用“鸽巢问题”解决简单的实际问题。

(2)通过操作发展学生的类推能力,形成比较抽象的数学思维。

(3)通过“鸽巢问题”的灵活应用感受数学的'魅力。

教学重点

经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”。

教学难点

理解“鸽巢问题”里的先“平均分”,再得出至少数的过程。并对一些简单实际问题加以“模型化”。

教具、学具准备

若干个纸杯(每小组3个)、笔(每小组4根)、扑克牌1副

教学过程

一、扑克魔术导入。

请同学们看我表演一个“魔术”。拿出一副扑克牌(去掉大小王)52张中有四种花色,请一个同学帮我从中随意抽5张牌,无论怎么抽,总有一种花色至少有2张牌是同花色的你相信吗?

你能说明其中的道理吗?老师不用看就知道“一定有2张牌是同花色的对不对?假如请这位同学再抽取,不管怎么抽,总有2张牌是同花色的,同意么?

其实这里蕴含了一个有趣的数学原理,这节课我们一起探究这个数学原理?(板书课题:鸽巢问题)

二、学习例1,列举探究

1、用枚举法深入研究4支笔放进3个纸杯里。

(1)要把4支笔放进3个纸杯里(纸杯代替),有几种放法?请同学们想一想,小组摆一摆,记一记;再把你的想法在小组内交流。(提醒学生左3右1与左1右3是同一种方法——不管杯子的顺序)

(2)反馈:四种放法:(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1)

(3)观察这四种放法,同学们有什么发现呢?(不管怎么放,总有一个纸杯里至少放有2枝铅笔)让孩子们充分地说。

板书:枚举法

(4)“总有”什么意思?(一定有)

(5)“至少”有2本是什么意思?(最少是2本,2本或者2本以上)。

2、假设法

①还可以这样想:先放3支,在每个笔筒中平均放1支,剩下的1支再放进其中的一个笔筒。所以至少有一个笔筒中有2支铅笔

②思考:为什么要先在每个笔筒里平均放一支呢?

③继续思考:

6只铅笔放进5个笔筒,总有一个笔筒至少放进()支铅笔。

10只铅笔放进9个笔筒,总有一个笔筒至少放进()支铅笔。

100只铅笔放进99个笔筒,总有一个笔筒至少放进()支铅笔。

④通过刚才的分析,你有什么发现?谁能试着说一说?

只要铅笔数比笔筒多1,总有一个笔筒里至少放进2支铅笔。

3、介绍鸽巢问题的由来。

(1)抽屉原理是组合数学中的一个重要原理,它最早由德国数学家狄利克雷(Dirichlet)提出并运用于解决数论中的问题,所以该原理又称“狄利克雷原理”。

(2)总结:把m个物体任意放进n个抽屉中,(m>n,m和n是非0自然数),若m÷ n= 1……a,那么一定有一个抽屉中至少放进了2个物体。

三、巩固练习:

1、5只鸽子飞进了3个鸽笼,总有一个鸽笼至少飞进了2只鸽子。为什么?

2、随意找13位老师,他们中至少有2个人的属相相同。为什么?

四、总结全课:这节课你有哪些收获呢?

(上面点学生说一说,不全的老师补充)

五、设疑留悬念。

如果是把7本书放进3个抽屉里,那么总有一个抽屉至少放进()本书。

如果有8本书呢?

六、作业布置

1.完成教材课后习题p71第5、6题;

2.完成练习册本课时的习题。

《鸽巢问题》教学设计 篇3

一、教学内容

教材第6

二、教学目标

1.经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”,会用“鸽巢问题”解决简单的实际问题。

2.通过操作发展学生的类推能力,形成比较抽象的数学思维。

3.通过“鸽巢问题”的灵活应用感受数学的魅力。

三、教学重难点

重点:经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”。难点:理解“鸽巢问题”,并对一些简单实际问题加以“模型化”。

四、教学准备

多媒体课件

纸杯

吸管

五、教学过程

一、课前游戏引入。

师:孩子们,你们知道刘谦吗?你们喜欢魔术吗?今天老师很高兴和大家见面,初次见面,所以老师特地练了个小魔术,准备送给大家做见面礼。孩子们,想不想看老师表演一下?

生:想

师:我这里有一副扑克牌,我找五位同学每人抽一张。老师猜。(至少有两张花色一样)

师:老师厉害吗?佩服吗?那就给老师点奖励吧!想不想学老师的'这个绝招。下面老师就教给你这个魔术,可要用心学了。有没有信心学会?

二、通过操作,探究新知

(一)探究例1

1、研究3根小棒放进2个纸杯里。

(1)要把3枝小棒放进2个纸杯里,有几种放法?请同学们想一想,摆一摆,写一写,再把你的想法在小组内交流。

(2)反馈:两种放法:(3,0)和(2,1)。(教师板书)(3)从两种放法,同学们会有什么发现呢?(总有一个文具盒至少放进2枝铅笔)你是怎么发现的?(说得真有道理)

(4)“总有”什么意思?(一定有)

(5)“至少”有2枝什么意思?(不少于2枝)

小结:在研究3根小棒放进2个纸杯时,同学们表现得很积极,发现了“不管怎么放,总有一个纸杯里放进2根小棒)

2、研究4根小棒放进3个纸杯里。

(1)要把4根小棒放进3个纸杯里,有几种放法?请同学们动手摆一摆,再把你的想法在小组内交流。

(2)反馈:四种放法:(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1)。(3)从四种放法,同学们会有什么发现呢?(总有一个纸杯里至少有2根小棒)

(4)你是怎么发现的?

(5)大家通过枚举出四种放法,能清楚地发现“总有一个纸杯里放进2根小棒”。

师:大家看,全放到一个杯子里,就有四个了。太多了。那怎么样让每个杯子里都尽可能少,你觉得应该要怎样放?(小组合作,讨论交流)(每个纸杯里都先放进一枝,还剩一枝不管放进哪个纸杯,总会有一个纸杯里至少有2根小棒)(你真是一个善于思想的孩子。)

(6)这位同学运用了假设法来说明问题,你是假设先在每个纸杯里里放1根小棒,这种放法其实也就是怎样分?(平均分)那剩下的1枝怎么处理?(放入任意一个文具盒,那么这个文具盒就有2枝铅笔了)

(7)谁能用算式来表示这位同学的想法?(4÷3=1…1)商1表示什么?余数1表示什么?怎么办?

(8)在探究4枝铅笔放进3个文具盒的问题,同学们的方法有两种,一是

2枚举了所有放法,找规律,二是采用了“假设法”来说明理由,你觉得哪种方法更明了更简单?

3、类推:把5枝小棒放进4个纸杯,总有一个纸杯里至少有几根小棒?为什么?

把6枝小棒放进5个纸杯,总有一个纸杯里至少有几根小棒?为什么?

把7枝小棒放进6个纸杯,是不是总有一个纸杯里至少有几根小棒?为什么?

把100枝小棒放进99个纸杯,是不是总有一个纸杯里至少有几根小棒?为什么?

4、从刚才我们的探究活动中,你有什么发现?(只要放的小棒比纸杯的数量多1,总有一个纸杯里至少放进2根小棒。)

5、小结:刚才我们分析了把小棒放进纸杯的情况,只要小棒数量多于纸杯数量时,总有一个纸杯里至少放进2根小棒。

这就是今天我们要学习的鸽巢问题,也叫抽屉原理。既然叫“抽屉原理”是不是应该和抽屉有联系吧?小棒相当于我们要准备放进抽屉的物体,那么纸杯就相当于抽屉了。如果物体数多于抽屉数,我们就能得出结论“总有一个抽屉里放进了2个物体。

小练习:

1、任意13人中,至少有几人的出生月份相同?

2、任意367名学生中,至少有几名学生,他们在同一天过生日?为什么?

3、任意13人中,至少有几人的属相相同?”

6、刚才我们研究的是小棒数比纸杯多1的情况,如果小棒比纸杯数多2呢?多3呢?是不是也能得到结论:“总有一个纸杯里至少有2根小棒。”

《鸽巢问题》教学设计 篇4

教学目标:

1、理解简单的鸽巢问题及鸽巢问题的一般形式,引导学生采用操作的方法进行枚举及假设法探究“鸽巢问题”。

2、体会数学知识在日常生活中的广泛应用,培养学生的探究意识。

教学重点:了解简单的鸽巢问题,理解“总有”和“至少”的含义。

教学难点:运用“鸽巢原理”解决相关的实际问题,理解数学中的优化思想。

教学过程:

一、游戏激趣导入新课

1、同学们看,老师手中拿的是什么?拿出大王和小王,剩下的牌中共有几种花色?

2、现在我们一起来玩猜花色的游戏,请5位同学到前面每人随意抽一张纸牌,抽完后不要让老师看到。

3、抽后老师大胆猜测:一副扑克牌,取出大王和小王,5人每人随意抽一张,至少有2张牌花色相同(课件出示)。

4、有些同学一定觉得老师只是凑巧猜对了,我们再抽一次,老师还大胆猜测:一副扑克牌,取出大王和小王,5人每人随意抽一张,至少有2张牌花色相同。如果老师猜对了,就给老师点掌声。

5、如果老师再换5名同学来抽牌,我还敢确定的'说至少有2张牌的花色相同,这是为什么呢?其实这里面蕴藏着一个有趣的数学原理--抽屉原理,也叫鸽巢原理或鸽巢问题,这节课我们就一起来研究这个问题。(板书课题)

(设计意图:通过这个游戏激发学生学习本节课的好奇心,也使学生感受到数学和生活中的联系,知道学习本节课的重要性。)

二、呈现问题自主探究

1、小红在整理自己的学习用品是有这样的发现(课件出示:把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。)学生齐读。

2、在这句话中你有什么不理解的吗?学生提出不理解的词语。

(1)不管:随意,想想怎么放就怎么放。

(2)总有:一定有。

(3)至少:最少,最起码。

师提问:最少2支指的是几支呢?具体来说。

2、把整句话翻译过来再说一遍。

(设计意图:让学生充分理解这句话的意思,为接下来的研究做好铺垫。)

2、你觉得这句话说得对吗?给同学们1分钟时间同学生静静思考一下。

3、现在同学用摆一摆、画一画、写一写等方法来验证这句话,老师出示自己的温馨提示。(课件出示:温馨提示:选择自己喜欢的方式验证,比如,同桌合作,用纸杯代替笔筒,用铅笔摆一摆,一人摆,一人记录。(注意:不考虑顺序。)

4、学生汇报验证的方法:

生1:利用图片来列举出几种放法

教师提问:我们来看这位同学的摆法,凭什么说“总有一个笔筒里至少有2支铅笔”呢?比2支多也可以吗?

教师小结:非常好,我们在观察这几种摆法,把符合要求的笔筒用彩色笔标出来:所以说不管怎么放总有一支笔筒里至少有2支铅笔。

生2:利用数字方法列举出几种方法(4,0,0)(3,1,0)(2,1,1)(2,2,0)

我们一起圈出每种分法不少于2的数字。(表扬生2,方法更简单一些)

5、同学们像刚才把所有中情况都列举出来,这种方法就叫做列举法或枚举法。(板书)

6、除了这种枚举法,还有没有别的方法也能证明这句话是对的。

生:先假设每个笔筒中放1支铅笔,这样还剩1支铅笔,这时无论放到哪个笔筒,哪个笔筒就是2支铅笔了,所以我认为是对的。

师追问:你为什么要现在每个笔筒里放1支呢?

生:因为一共有4支笔,平均分后每个笔筒只能分到一支。

师追问:那为什么要一开始就去平均分呢?

生:平均分就可以使每个笔筒中的笔尽量少一点,如果这样都能符合要求,其他中情况都能符合要求了。

(设计意图:教师的追问让学生更明确为什么要平均分,平均分的好处是什么。)

7、这位同学的想法真是太与众不同了,我们为他鼓掌,谁听懂了他的想法,把他的想法在复述一遍。

8、想这位同学的方法就是假设法。(板书:假设法)

9、到现在为止,我们可以得出结论了。

三、提升思维构建模型

1、刚才我们通过不同的方法验证了这句话是正确的,现在老师把题目改一改,同学们看看还对不对了,为什么?(课件出示:把5支铅笔放进4个笔筒里,不管怎么放,总有一个笔筒里至少有2支铅笔。)生回答并说明理由。

2、课件继续出示:

(1)把6个苹果放进5个盘子里呢?

(2)把10本书放进9个抽屉中呢?

(3)把100只鸽子放进99个笼子中呢?

3、我们为什么都采用了假设法来分析,而不是画图用枚举法呢?(枚举法虽然直观,但是有一定的局限性,假设法更具有一般性)

(设计意图:通过出示更大的数,让学生感受到用假设法的方便性,实用性,同时引出的优化的思想。)

4、在数学课堂上我们通常采用更便于我们解决的方法来解决问题,这是一种优化的思想。(板书:优化思想)

5、引出物体数、鸽巢数、至少数,学生观察,你有什么发现吗?(当物体数比鸽巢数多1时,总有一个鸽巢里至少有2个物体。)

6、回过头来我们看课前老师猜测的扑克牌的游戏,谁能解释一下是怎么回事呢?看来并不是老师神奇,而是鸽巢问题神奇啊。

7、同学们今天的发现是德国数学家狄利克雷最早提出的:课件介绍有关鸽巢问题的来历。

四、解决问题练习巩固

通过学生的努力,我们一起研究出鸽巢问原理,现在老师出几道题看同学们是否真的学会了。

1、5只鸽子飞进了3个鸽笼,总有一个鸽笼至少飞进了2只鸽子。为什么?

2、把()本书放进3个抽屉,不管怎么放,总有一个抽屉至少放进2本书。()中能填几呢?

(设计意图:习题2锻炼学生的逆向思维,同时也为下节课的学习埋下了伏笔。)

五、课堂总结

这节课的探究学习中,我们一起经历了与德国数学家狄利克雷一样的伟大发现,你有什么收获呢?