一元一次不等式教学设计
老地方整理的一元一次不等式教学设计(精选5篇),希望这些优秀内容,能够帮助到大家。
一元一次不等式教学设计 篇1
一、内容和内容解析
(一)内容
一元一次不等式的概念及解法
(二)内容解析
在初中阶段,不等式位于一次方程(组)之后,它是进一步探究现实世界数量关系的重要内容,不等式的研究从最简单的一元一次不等式开始,一元一次不等式及其相关概念是本章的基础知识,解任何一个代数不等式(组)最终都要化归为解一元一次不等式,因此解一元一次不等式是一项基本技能·另外,不等式解集在数轴上表示从形的角度描述了不等式的解集,并为解不等式组做了准备,本节内容是进一步学习其它不等式(组)的基础·解一元一次不等式与解一元一次方程在本质上是相同的,即依据不等式的性质,逐步将不等式化为xa或x
二、目标和目标的解析
(一)目标
(1)了解一元一次不等式的概念,掌握一元一次不等式的解法;
(2)在依据不等式的性质探究一元一次不等式的解法的过程中,加深对化归思想的体会·(二)目标解析
达到目标(1)的标志是:学生能说出一元一次不等式的特征,会解一元一次不等式,并能在数轴上表示出解集·达到目标(2)的标志是:学生能通过类比解一元一次方程的过程,获得解一元一次不等式的思路,即依据不等式的性质,将一元一次不等式逐步化简为xa或x
三、教学问题诊断分析
通过前面的学习,学生已掌握一元一次方程概念及解法,对解一元一次方程的化归思想有所体会但还不够深刻·因此,运用化归思想把形式复杂的不等式转化为xa或x
本节课的教学难点为:解一元一次不等式步骤的确定·四、教学过程设计
(一)引导观察
形成概念
问题:观察下面的不等式,它们有哪些共同特征?
x—726
3x2x+1 x50
—4x3
学生回答,教师可以引导学生从不等式中未知数的个数和次数两个方面去观察不等式的特点,并与一元一次方程的定义类比·师生共同归纳获得:含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式·设计意图:引导学生通过观察给出不等式,归纳出它们的共同特征,进而得到一元一次不等式的定义,培养学生观察、归纳的能力·(二)通过类比研究解法
练习:利用不等式的性质解不等式x—726
学生尝试独立完成练习
教师结合解题过程,指出:由x—726可得到x26+7,也就是说解不等式和解方程一样,也可以移项,即把不等式一边的某项变号后移到另一边,而不改变不等号的方向·设计意图:通过解简单的一元一次不等式,让学生回忆利用解方程的过程,教师通过简化练习中的解题步骤,让学生明确不等式和解方程一样可以移项,为下面类比解方程形成解不等式的步骤作好准备·设问1:解一元一次方程的依据和一般步骤是什么?
学生回忆解一元一次方程的依据是等式的性质·一般步骤是:去分母,去括号,移项,合并同类项,系数化为1·设问2:解一元一次不等式能否采用类似的步骤?
学生讨论解一元一次不等式是否可以采用类似的步骤,教师再指出:利用不等式的性质,采取与解一元一次方程类似的步骤,就可以求出一元一次不等式的解集·设计意图:通过回忆解一元一次方程的依据和一般步骤,让学生思考解一元一次不等式能否采用同样步骤,从而获得解一元一次不等式的思路·(三)例题讲解规范步骤
例:解下列不等式,并在数轴上表示解集(1)2(1+x)3(2)
设问(1):解一元一次不等式的目标是什么?
学生在教师问题的引导下,思考如何将一元一次不等式变形为最简形式·设问(2):你能类比解一元一次方程的步骤,解第(1)小题吗?
由学生独立完成,老师评讲
设问(3)对比不等式与2(1+x)3的两边,它们在形式上有什么不同?
设问(4):怎样将不等式变形,使变形后的不等式不含分母?
小组合作交流,老师点拨
设问(5):你能说出解一元一次不等式的.基本步骤吗?
学生回答,教师总结:去分母,去括号,移项,合并同类项,系数化为1·设问(6):对比第(1)小题和第(2)小题的解题过程,系数化为1时应注意些什么?
学生回答,教师再强调:要看未知数系数的符号,若未知数的系数是正数,则不等号的方向不变,若是负数,则不等号的方向要改变·设计意图:通过解具体的一元一次不等式,引导学生明确解不等式以化归思想为指导,比较原不等式与目标形式(xa或x
(四)辨别异同深化认识
设问1:解一元一次不等式和解一元一次方程有哪些相同和不同处?
学生在教师的引导下将解一元一次不等式的过程与解一元一次方程的过程进行比较,思考二者的相同和不同处·相同之处:基本步骤相同:去分母、去括号、移项、合并同类项、系数化为1·基本思想相同:都是运用化归思想,都要变为最简形式·不同之处:解法依据不同:解不等式是依据不等式的性质,解方程依据等式的性质·最简形式不同:解一元一次不等式:最简形式是xa或x
设计意图:在归纳出一元一次不等式的解法之后,引导学生对比一元一次方程的解法,思考二者的异同,加深对一元一次不等式解法的理解,体会化归思想和类比思想·设问2:解一元一次不等式每一步变形的依据是什么?
学生作答,教师再引导学生体会结合例题的解题过程思考每一步变形的依据·设计意图:通过具体操作,归纳出解一元一次不等式的基本步骤及每一步变形的依据,提高学生的总结、归纳能力·(五)练习巩固形成能力
练习:解一元一次不等式x并把它的解集,在数轴上表示出来·学生独立解不等式,老师点评
设计意图:学生独立按照解集一元一次不等式的步骤解不等式,学以致用·(六)归纳小结反思提高
教师和学生一起回顾本节课的学习主要内容,并请学生回答以下问题:
(1)怎样解一元一次不等式?解一元一次不等式和解一元一次方程有哪些相同和不同处?
(2)解一元一次不等式运用了哪些数学思想?
设计意图:通过问题引导学生再次回顾本节课,从数学知识,数学思想方法等层面,提升对本节课所研究内容的认识·(七)布置作业,课外反馈
教科书习题第1,2,3题
设计意图:通过课后作业,教师及时了解学生对本节课知识的掌握情况,以便对教学进度和方法进行适当的调整·五、目标检测设计
1·解不等式
(1)—8x3(2)—x—(3)3x—74x—4
设计意图:本题主要考查学生解一元一次不等式时将系数化1和移项的准确性·2·解下列不等式,并分别把它们的解集在数轴上表示
(1)3(x+2)—15—2(x—2)(2)—2
设计意图:本题主要考查学生解一元一次不等式,并在数轴上表示解集的能力·
一元一次不等式教学设计 篇2
一元一次不等式教学设计
作为一名辛苦耕耘的教育工作者,就难以避免地要准备教学设计,教学设计一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。那么写教学设计需要注意哪些问题呢?以下是小编帮大家整理的一元一次不等式教学设计,欢迎阅读,希望大家能够喜欢。
一元一次不等式教学设计 篇3
教学目标:了解一元一次不等式的概念,掌握一元一次不等式的解法。
教学重点:是掌握解一元一次不等式的步骤.
教学难点:是必须切实注意遇到要在不等式两边都乘以(或除以)同一负数时,必须改变不等号的方向.
教学过程: 一、问题导入
复习:1、不等式的基本性质有哪些?什么是一元一次方程?并举出两个例子。
2、观察不等式x+3<5与x<2,说明解x<2是x+3<5依据什么变形得到的?
3、解一元一次方程:6x+ 5=7-2x,目的是为了与下面所学的解一元一次不等式进行类比,找到它们的联系与区别。
二、指导自学,小组合作交流
请同学们根据以下提问进行自学,先个人思考,后小组合作学习。
1、观察下列不等式,说一说这些不等式有哪些共同特点?
(1)2x+5 ≥8 (2)x+1≤-4 ( 3)x<2 (4)6-3x>4 3(x+1)≤0
观察上面不等式有哪些共同特点,让学生通过交流,再总结一元一次不等式的概念。老师板书定义。
2、让学生举出2或3个一元一次不等式的例子,小组交流。
3、让学生通过比较解一元一次方程:6x+ 5=7-2x的解法试解一元一次不等式:6x+ 5<7-2x,并将解集在数轴上表示出来。
4、思考:一元一次不等式与一元一次方程的解法有哪些类似之处?有什么不同?
5、解下列不等式,并把它们的解集在数轴上表示出来。
(1)3-x < 2x +9 (2)2-4(x-1)> 3(x+2) -x
(3)(x-1)/ 3≥(2-x)/2+1
总结:解一元一次不等式的.依据和解一元一次不等式的步骤。
三、互动交流,教师点拨
(一)、学生易出错的问题和注意的事项:
1、确定一个不等式是不是一元一次不等式,要抓住三个要点:左右两边都是整式,只有一个未知数,未知数的次数是1。
2、对于(1),让学生说明不等式3-x < 2x + 9的每一步变形的依据是什么,特别注意的是:解不等式的移项和解方程的移项一样。即移项要变号(培养学生运用类比的数学思想)。
3、不等式两边同时除以(-3)时,不等号的方向改变。
2、重点点拨(2)和(3),先让学生到黑板上板演。老师再讲评。
(2)易出错的地方是:去括号时漏乘,括号前是负号,去掉括号后括号里的项没变号,还有移项没有变号;(3)易出错的地方是:去分母时漏乘无分母的项。
3、归纳解一元一次不等式的步骤(与解一元一次方程的步骤类比):去分母,去括号,移项,合并同类项,系数化为1。(在系数化为1这一步要特别提醒学生注意当系数为负数时,要记住改变不等号的方向。)
四、 巩固练习
1、判断下列不等式是不是一元一次不等式,为什么?
(1)2/x—3<5x+3 (2) 5x+3x–1 (4) x(2x+1) 问题1:举出一元一次方程的例子? 【设计意图】复习一元一次方程的概念,便于对比探索一元一次不等式概念。这不仅有助于对旧知识的复习和巩固,同时还可以培养学生的类比和探究能力。 问题2: 将学生举出的一元一次方程中的等号改写成不等号。请学生观察有哪些共同的特征? 通过以上问题归纳得到一元一次不等式的概念:只含一个未知数,未知数的次数是1的不等式,叫做一元一次不等式。 【设计意图】问题2采用自主发现的教学方法引导学生从众多的不等式中,通过归纳其共同特点,得到一元一次不等式的概念,培养了学生观察、归纳和语言表达能力。 问题3:学生举一元一次不等式的例子,学生判断。 师:判断下列各式是否是一元一次不等式? ①②③④⑤ ⑥ 【设计意图】此题让学生运用概念识别一元一次不等式,考察学生是否达成教学目标1。 、探索新知2 通过前面的学习,我们知道解不等式的目的,就是将不等式变形成x>a或x 【设计意图】让学生明白不管一元一次不等式有多复杂,最终都可以转化为x>a或x 师:那怎么来解一元一次不等式呢?有具体的解法吗?请看下题 (1)解方程解不等式 2(1+x)=3 (1) 2(1+x) 学生回答不等式含有分母 师:怎样变形使不等式不含分母? 师生共同去分母解(2)题 师:通过(1)、(2)题的学习你有什么发现? 生:解一元一次不等式的解题步骤和解一元一次方程的解题步骤相同,都是:去分母,去括号,移项,合并同类项,系数化为1. 师:在解(1)和(2)题的过程中注意些什么? 生:系数化为1时,注意未知数系数的符号,未知数的系数是正数,则不等号的方向不变,若未知数的系数是负数,则不等号的方向改变。 【设计意图】根据学生已经会解一元一次方程的实际情况,学生主动地参“探究——讨论——交流——总结”等数学活动,把一元一次方程和一元一次不等式进行了对比,实现了知识的自然迁移,使学生在自主探索和合作交流的过程中不知不觉地学到了新知识,理解并掌握了解一元一次不等式的一般步骤,教学重点得以基本达成,教学难点也取得相应突破。 练习小明解不等式的过程如下,请找出错误之处,并说明错误的原因。 解:2x-2+2 2x-3x<-2+2 -x 本节课你学会了些什么? 解一元一次不等式和解一元一次方程有哪些相同和不同之处? 【设计意图】通过问题引导学生再次回顾本节课。 布置作业 教科书习题9.2第1,2,3,题 目标检测 解一元一次不等式?,并把它的解集在数轴上表示出来. 6、教学评价的设计 本节课主要以问题串的形式贯穿整个教学过程,学生任务明确。教师在每一个教学环节中灰渗透了类别的学习思想,这使学生在学习新知的过程中利用正迁移,在轻松的氛围中完成了对新知的学习。课上回答的问题及解题在正确率以小组的得分的形式计入到小组教学成绩日常评比中。 一、内容和内容解析 (一)内容 一元一次不等式的概念及解法 (二)内容解析 在初中阶段,不等式位于一次方程(组)之后,它是进一步探究现实世界数量关系的重要内容,不等式的研究从最简单的一元一次不等式开始,一元一次不等式及其相关概念是本章的基础知识,解任何一个代数不等式(组)最终都要化归为解一元一次不等式,因此解一元一次不等式是一项基本技能.另外,不等式解集在数轴上表示从形的角度描述了不等式的解集,并为解不等式组做了准备,本节内容是进一步学习其它不等式(组)的基础. 解一元一次不等式与解一元一次方程在本质上是相同的,即依据不等式的性质,逐步将不等式化为x>a或x<a的形式,从而确定未知数的取值范围,这一化繁为简的过程,充分体现了化归的思想.基于以上分析,本节课的教学重点:一元一次不等式的解法. 二、目标和目标的解析 (一)目标 (1)了解一元一次不等式的概念,掌握一元一次不等式的解法; (2)在依据不等式的性质探究一元一次不等式的解法的过程中,加深对化归思想的体会. (二)目标解析 达到目标(1)的标志是:学生能说出一元一次不等式的特征,会解一元一次不等式,并能在数轴上表示出解集. 达到目标(2)的标志是:学生能通过类比解一元一次方程的过程,获得解一元一次不等式的思路,即依据不等式的性质,将一元一次不等式逐步化简为x>a或x<a的形式,学生能借助具体例子,将化归思想具体化,获得解一元一次不等式的步骤. 三、教学问题诊断分析 通过前面的学习,学生已掌握一元一次方程概念及解法,对解一元一次方程的化归思想有所体会但还不够深刻.因此,运用化归思想把形式复杂的`不等式转化为x>a或x<a的形式,对学生有一定的难度.所以,教师需引导学生类比解一元一次方程的步骤,分析形式复杂的一元一次不等式的结构特征,并与化简目标进行比较,逐步将不等式变形为最简形式. 本节课的教学难点为:解一元一次不等式步骤的确定. 四、教学过程设计 (一)引导观察 形成概念 问题:观察下面的不等式,它们有哪些共同特征?x—7>26 3x<2x+1 x>50 —4x>3学生回答,教师可以引导学生从不等式中未知数的个数和次数两个方面去观察不等式的特点,并与一元一次方程的定义类比.师生共同归纳获得:含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式. 设计意图:引导学生通过观察给出不等式,归纳出它们的共同特征,进而得到一元一次不等式的定义,培养学生观察、归纳的能力. (二)通过类比研究解法 练习:利用不等式的性质解不等式x—7>26学生尝试独立完成练习 教师结合解题过程,指出:由x—7>26可得到x>26+7,也就是说解不等式和解方程一样,也可以“移项”,即把不等式一边的某项变号后移到另一边,而不改变不等号的方向. 设计意图:通过解简单的一元一次不等式,让学生回忆利用解方程的过程,教师通过简化练习中的解题步骤,让学生明确不等式和解方程一样可以“移项”,为下面类比解方程形成解不等式的步骤作好准备.设问1:解一元一次方程的依据和一般步骤是什么? 学生回忆解一元一次方程的依据是等式的性质.一般步骤是:去分母,去括号,移项,合并同类项,系数化为1. 设问2:解一元一次不等式能否采用类似的步骤?学生讨论解一元一次不等式是否可以采用类似的步骤,教师再指出:利用不等式的性质,采取与解一元一次方程类似的步骤,就可以求出一元一次不等式的解集.设计意图:通过回忆解一元一次方程的依据和一般步骤,让学生思考解一元一次不等式能否采用同样步骤,从而获得解一元一次不等式的思路. (三)例题讲解规范步骤 例:解下列不等式,并在数轴上表示解集(1)2(1+x)< 设问(1):解一元一次不等式的目标是什么? 学生在教师问题的引导下,思考如何将一元一次不等式变形为最简形式.设问(2):你能类比解一元一次方程的步骤,解第(1)小题吗?由学生独立完成,老师评讲设问(3)对比不等式么不同? 设问(4):怎样将不等式 变形,使变形后的不等式不含分母? 与2(1+x)<3的两边,它们在形式上有什小组合作交流,老师点拨设问(5):你能说出解一元一次不等式的基本步骤吗? 学生回答,教师总结:去分母,去括号,移项,合并同类项,系数化为1.设问(6):对比第(1)小题和第(2)小题的解题过程,系数化为1时应注意些什么? 学生回答,教师再强调:要看未知数系数的符号,若未知数的系数是正数,则不等号的方向不变,若是负数,则不等号的方向要改变.设计意图:通过解具体的一元一次不等式,引导学生明确解不等式以化归思想为指导,比较原不等式与目标形式(x>a或x<a)的差异,思考如何依据不等式的性质将原不等式通过变形转化为最简形式,以获得解一元一次不等式的步骤. (四)辨别异同深化认识 设问1:解一元一次不等式和解一元一次方程有哪些相同和不同处? 学生在教师的引导下将解一元一次不等式的过程与解一元一次方程的过程进行比较,思考二者的相同和不同处. 相同之处:基本步骤相同:去分母、去括号、移项、合并同类项、系数化为1.基本思想相同:都是运用化归思想,都要变为最简形式. 不同之处:解法依据不同:解不等式是依据不等式的性质,解方程依据等式的性质.最简形式不同:解一元一次不等式:最简形式是x>a或x<a,一元一次方程的最简形式是x=a.设计意图:在归纳出一元一次不等式的解法之后,引导学生对比一元一次方程的解法,思考二者的异同,加深对一元一次不等式解法的理解,体会化归思想和类比思想. 设问2:解一元一次不等式每一步变形的依据是什么? 学生作答,教师再引导学生体会结合例题的解题过程思考每一步变形的依据.设计意图:通过具体操作,归纳出解一元一次不等式的基本步骤及每一步变形的依据,提高学生的总结、归纳能力. (五)练习巩固形成能力练习:解一元一次不等式 并把它的解集,在数轴上表示出来. 学生独立解不等式,老师点评 设计意图:学生独立按照解集一元一次不等式的步骤解不等式,学以致用. (六)归纳小结反思提高 教师和学生一起回顾本节课的学习主要内容,并请学生回答以下问题: (1)怎样解一元一次不等式?解一元一次不等式和解一元一次方程有哪些相同和不同处? (2)解一元一次不等式运用了哪些数学思想? 设计意图:通过问题引导学生再次回顾本节课,从数学知识,数学思想方法等层面,提升对本节课所研究内容的认识. (七)布置作业,课外反馈教科书习题9.2第1,2,3题 设计意图:通过课后作业,教师及时了解学生对本节课知识的掌握情况,以便对教学进度和方法进行适当的调整. 五、目标检测设计1·解不等式 (1)—8x<3 (2)—x≥—(3)3x—7≥4x—4设计意图:本题主要考查学生解一元一次不等式时将系数化1和移项的准确性.2·解下列不等式,并分别把它们的解集在数轴上表示(1)3(x+2)—1≥5—2(x—2)(2)>—2设计意图:本题主要考查学生解一元一次不等式,并在数轴上表示解集的能力. 教学目标: 1、了解一元一次不等式的概念。 2、能类比一元一次方程的解法步骤解一元一次不等式,并把解集在数轴上表示。 3、体会自主与合作学习的快乐,体会数学学习中类比的思想方法。 教学重点: 一元一次不等式的.概念及解法步骤。 教学难点: 解一元一次不等式。 教学流程: 一:情境诱导:一件商品x元,买50件这样的商品总共花了350元,则可得一元一次方程为:。若买50件这样的商品总花费不高于350元,则可得到怎样的式子?(师问:什么叫一元一次方程,后面的这个式子是一元一次方程吗?那么这样的式子你能给起个名子吗?好,这就是咱们今天要研究的一元一次不等式!) 二:自学指导: 学生自学课本122——123页,并对照课本,找自学提纲中问题的答案;老师先做必要的板书准备,再到学生中巡视指导,了解学情,为展示归纳做准备。 附:自学提纲 1、什么叫做一元一次不等式?它有什么特征?你能举两个例子说明吗? 2、一般地,利用不等式的性质,采取与,就可以求出一元一次不等式的解集. 3.课本上例1中 1)题解答过程有哪几个步骤 (2)题又有哪几个步骤,由此你能总结出解一元一次不等式的步骤吗? 4.议一议,解一元一次不等式和解一元一次方程有什么相同点和不同点? 三、展示归纳 1.抽有问题的学生逐题展示自学提纲中的问题答案,学生说,老师板书, 2.发动学生进行评价、补充、完善, 3.老师根据每个题目的展示情况进行必要的强调;全部展示完毕后,老师强调定义和步骤,提请注意不等式两端乘除负数不等号反向。 四、变式练习: 1题口答,不仅要说出结果,还要说出理由; 2、3题逐题出示,学生先做,教师做必要的板书准备,再到学生中巡视指导,了解学情,然后抽有问题的学生展示,学生说,老师板书,发动学生进行评价、补充、完善,老师进行必要的强调。 1、下列不等式中,哪些是一元一次不等式?(1)4<5.1(2)5x+35 2、课本124页1题(1)(2)(3)(4)3、课本124页2题, 五:课堂小结:本节课你学到的知识有哪些?你认为有哪些重点要强调,哪些易错点应注意?六:作业:七:课后延伸:生活中的不等式应用很多,有时可以帮我们解决很多困难,下节课我们继续学习。一元一次不等式教学设计 篇4
一元一次不等式教学设计 篇5
网站导航