乘方教学设计
老地方整理的乘方教学设计(精选4篇),希望这些优秀内容,能够帮助到大家。
乘方教学设计 篇1
教学目标
1.知识与技能
理解幂的乘方的运算性质,进一步体会和巩固幂的意义;通过推理得出幂的乘方的运算性质,并且掌握这个性质.
2.过程与方法
经历一系列探索过程,发展学生的合情推理能力和有条理的表达能力,通过情境教学,培养学生应用能力.
3.情感、态度与价值观
培养学生合作交流意义和探索精神,让学生体会数学的应用价值.
重、难点与关键
1.重点:幂的乘方法则.
2.难点:幂的乘方法则的推导过程及灵活应用.
3.关键:要突破这个难点,在引导这个推导过程时,步步深入,层层引导,?要求对性质深入地理解.
教学方法
采用“探讨、交流、合作”的教学方法,让学生在互动交流中,认识幂的乘方法则.
教学过程
一、创设情境,导入新知
【情境导入】
大家知道太阳,木星和月亮的体积的大致比例吗?我可以告诉你,?木星的半径是地球半径的102倍,太阳的半径是地球半径的103倍,假如地球的半径为r,那么,?请同学
解:设地球的.半径为1,则木星的半径就是102,因此,木星的体积为423?·v木星=(10)=?(引入课题).
3 【教师引导】(102)3=?利用幂的意义来推导.
【学生活动】有些同学这时无从下手.
【教师启发】请同学们思考一下a3代表什么?(102)3呢?
【学生回答】a=a×a×a,指3个a相乘.(10)=10×10×10,就变成了同底数幂乘法运算,根据同底数幂乘法运算法则,底数不变,指数相加,10×10×10=10因此(102)3=106.
【教师活动】下面有问题:2222+2+=10,?6利用刚才的推导方法推导下面几个题目:
(1)(a2)3;(2)(24)3;(3)(bn)3;(4)-(x2)2.
【学生活动】推导上面的问题,个别同学上讲台演示.
【教师推进】请同学们根据所推导的几个题目,推导一下(a)的结果是多少?
【学生活动】归纳总结并进行小组讨论,最后得出结论:
(a)=(am?am???am)?a???n个ammn???m?m?mn个m= amn.
评析:通过问题的提出,再依据“问题推进”所导出的规律,利用乘方的意义和幂的乘法法则,让学生自己主动建构,获取新知:幂的乘方,底数不变,指数相乘.
二、范例学习,应用所学
【例】计算:
(1)(103)5;(2)(b3)4;(3)(xn)3;(4)-(x7)7.
【思路点拨】要充分理解幂的乘方法则,准确地运用幂的乘方法则进行计算.
【教师活动】启发学生共同完成例题.【学生活动】在教师启发下,完成例题的问题:并进一步理解幂的乘方法则:解:(1)(10)=×5=10;(3)(x)=x15n3n×3=x;3n(2)(b3)4=b3×4=b12;(4)-(x7)7=-x7×7=-x49.
三、随堂练习,巩固练习
课本p143练习.
【探研时空】
计算:-x·x·(x)+x.
【教师活动】巡视、关注中等、中下的学生,媒体显示练习题.
【学生活动】书面练习、板演.
四、课堂总结,发展潜能
1.幂的乘方(am)n=amn(m,n都是正整数)使用范围:幂的乘方.方法:底数不变,指数相乘.
2.知识拓展:这里的底数、指数可以是数,可以是字母,?也可以是单项式或多项式.3.幂的乘方法则与同底数幂的乘法法则区别在于,一个是“指数相乘”,?一个是“指数相加”.
五、布置作业,专题突破
课本p148习题15.1第
1、2题.
板书设计
乘方教学设计 篇2
一、教学内容:
八年级上册第十四章《整式的乘除与因式分解》第一节第二课时“幂的乘方”。
二、教学目标:
知识与技能目标:通过观察、类比、归纳、猜想、证明,经历探索幂的乘方法则的发生过程;掌握幂乘方法则;会运用法则进行有关计算。
过程与方法目标:培养学生观察探究能力,合作交流能力,解决问题的能力和对学习的反思能力;体会具体到抽象再到具体、转化的数学思想。
情感、态度与价值观目标:体验用数学知识解决问题的乐趣,培养学生热爱数学的情感。通过老师的及时表扬、鼓励,让学生体验成功的乐趣。
三、教学重、难点:
重点:幂的乘方法则的生成及应用。
难点:区别幂的乘方运算与同底数幂的乘法运算。
四、教法与学法:
教法:主要采用“引导探究法”——先创设情境让学生独立思考,再鼓励学生合作交流,探索其中的规律,获得新知,体验探索数学知识的快乐。
学法:主要采用“研讨式学习”——让学生在自主探索、合作交
流的活动中,体验探究的过程,主动建构知识,同时培养学生动口、动手、动脑的能力。
教学手段:采用多媒体辅助教学。
五、教学过程:
本节课主要让学生在原有的认知基础上,主动建构新知,分以下几个教学活动完成:
1、活动一:温故知新,铺垫新知。
2、活动二:创设情境,探索新知。
3、活动三:解决问题,应用新知。
4、活动四:反馈练习,巩固新知。
5、活动五:综合变式,拓展新知。
6、活动六:学有所思,感悟新知。
7、活动七:完成作业,回味新知。
活动一:温故知新,铺垫新知
1、知识回顾:口述同底数幂的乘法法则:am·an= am+n(m、n都是正整数)
同底数幂相乘,底数不变,指数相加。
2、计算:
(1)a6·a2 = a8(2)x2·x3·x4 = x9(3)(-x)3·(-x)5=(-x)8=x8(4)a2·a3 + a4·a=2a5
3、下面的`计算对不对?如果不对应该怎样改正?(1)x3·x3= 2x3(2)x3 + x3= x6(3)a·a3 = a3
4、若am=3,an=2,则am+n 。
5、小结:同底数幂来相乘,底数不变指数加;用准法则是关键,正反两用才到家。
活动二:创设情境,探索新知
1、(a2)3和(am)3都表示一种什么运算?(乘方运算,而且是幂的乘方运算)
2、自主探索:先根据根据乘方的意义填第一个空,再根据同底数幂的乘法填第二个空,看看计算的结果有什么规律?
(1)(32)3=32×32×32=36(2)(a2)3= a2·a2·a2= a6(3)(am)3= am·am·am = a3m(m是正整数)
3、总结规律:
(1)通过上面的练习,你发现了什么?(幂的乘方,底数不变,指数相乘)
(2)对于任意底数a与任意正整数m、n,(am)n=?n个am(am)n =am 。am 。?。am(乘方的意义)n个m = am+m+?+m(同底数幂的乘法法则)= amn(乘法的定义)
4、得出新知:幂的乘方的运算公式
数学语言:(am)n = amn(m、n是正整数)
文字语言:幂的乘方,底数不变,指数相乘。
活动三:解决问题,应用新知
例题教学:计算:
(1)(103)5(2)(a4)5(3)(am)2(4)–(x4)3解:(1)(103)5 =103×5 =1015(2)(a4)5= a4×5= a20(3)(am)2 = am 。2 = a2m(4)–(x4)3= –x4×3= –x12活动四:反馈练习,巩固新知
1、计算:
(1)(x3)2(2)[(a-b)3]4(3)–(xm)5(4)(a2)3·a3
2、快速口答:(1)a3·a3=(2)a3+a3=(3)(a3)3 =活动五:综合变式,拓展新知
1、综合练习:a6 + a4·a2 +(a3)2
2、幂的乘方法则的逆用公式:amn =(am)n =(an)m
3、拓展练习:若am=5,则a2m
活动六:学有所思,感悟新知
(1)本节课你的主要收获是什么?(学习了“幂的乘方运算法则”)语言叙述:幂的乘方,底数不变,指数相乘。
符号叙述:(am)n = amn(m、n是正整数)(2)你认为在运用“幂的乘方运算法则”,重点应该注意什么?(如“注意与同底数幂的乘法法则相区别”、“注意幂的乘方法则可以逆用”等)
(3)你能用几句顺口溜来概括本节所学知识和注意事项吗?(参考:幂的乘方有法则,底数不变指数乘;区分法则很重要,正反两用才入道。)活动七:完成作业,回味新知
必做题:教材第104页习题14·1第1题的
3、4两个小题。
附加题:
1、计算:(1)a2·a4+(a3)2(2)(x3)2·(x4)2
2、比较大小:233和322
乘方教学设计 篇3
教学目的:
使学生理解指数是正整数的乘方的意义,并能正确进行有理数的乘方运算.
教学重点:
乘方的意义.
教学难点:
正确理解乘方、底数、指数的概念并合理运算.
教学过程
一、复习提问
1.乘方的定义及意义
这种求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在an中,相同因数a叫做底数,相同因数的个数n叫做指数,an读作a的n次方.an看作是a的n次方的结果时,也可读作a的.n次幂.
如:(—2)5,底数是—2,指数是5,读作—2的五次方或—2的五次幂.
一般地说,指数是几,就叫做底数的几次方或几次幂.说明:
(1)乘方是一种运算,是已知底数、指数求幂的运算.如(—2)5=—32是已知底数为—2,指数为5,求得幂是—32.an本身既是结果也是运算符号.同加、减、乘、除运算一样,乘方运算可认为是第五种运算.见下表:
(3)当n是2时,可读作平方;当n是3时,可读作立方.如:52读作5的平方;103读作10的立方.a2读作a的平方,a3读作a的立方.
练习:说出下列各数表示的意义,并指出其中的底数、指数、幂及它们的读法.
2.乘方运算:
提问:前边练习中各数的幂是如何计算出来的?回答:根据乘方的定义计算出来的.
根据乘方定义,an就是n个a相乘,所以,可以利用有理数乘法运算来进行有理数的乘方运算.例1计算:
解:(1)(—3)4=(—3)(—3)(—3)(—3)=81;(2)—34=—(3)(3)(3)(3)=—81;
说明:
(1)根据有理数乘法的运算法则,由(1)(3)不难归纳出乘方运算的符号法则:正数的任何次幂都是正数.负数的奇次幂是负数,负数的偶数次幂是正数.
(2)由(1)(2)看出(—3)4与—34不同,(—3)4读作—3的4次幂,是负数的偶次幂,结果是正数,—34读作3的4次幂的相反数,结果是负数;又:(—3)4的底数是—3,指数4是管着“—”号的,而—34的底数是3,指数4并不管“—”号.注意问题:负数的乘方,在书写时一定要把整个负数(连同符号)用小括号括起来.
注意问题:分数的乘方,在书写时也要用括号把分数括起来.例
2计算:
(1)—3×24;(2)(—3×2)4.解:
(1)—3×24=—3×16=—48;(2)(—3×2)4=(—6)4=1296.
说明:算式中没有顺序符号的应按先乘方、后乘除、最后加减的顺序去做,有顺序符号的应先做括号内的.
例
3当x=—4,y=—3时,求下列各式的值:(1)(x+y)2;(2)x2—y2;(3(x—1)2+y;(4)x3—y3.解:当x=—4,y=—3时,
(1)(x+y)2=(—4—3)2=(—7)2=49;(2)x2—y2=(—4)2—(—3)2=16—9=7;
(3)(x—1)2+y=(—4—1)2+(—3)=25—3=22;(4)x3—y3=(—4)3—(—3)3=—64+27=—37.课堂练习
1.口答计算:
(—1)10;
(—1)7;83;(—5)3;
010;的偶次幂等于1.
2.计算:
(1)—(—2)4;(2)4·(—2)3;(3)32—23;(4)—32—(—2)2;
(5)—22+(—3)2;(6)(—2)2(—3)2;(7)—22×(—3)2;(8)—(— 3)2(—23);(9)—13—3(—1)3.三、小结
指导学生看书,强调正确理解乘方的意义,底数、指数、幂的概念;以及运算中注意的问题.
四、作业
五、教后记
乘方教学设计 篇4
教学目标
知识与技能:
1、会推导幂的乘方法则,并还能运用幂的乘方性质进行有关计算。 2、幂的乘方与同底数幂的乘法的正确区分。
过程与方法
通过对现实事物如正方体的体积的认识初步了解幂的乘方的形式,体会幂的乘方的应用价值。
情感﹑态度与价值观
通过师生共同交流,学生自主发言,渗透数学知识解决实际问题,激发学生学习的兴趣,帮学生树立自信心。
学情介绍
从学生的认知规律看,他们已经学习了乘方的意义﹑幂的意义以及
同底数幂的乘法,幂的乘方其实就是以上的结合,从教学中引导学生讨论交流。
内容分析
本节课是在前面学习的基础上进一步学习幂的乘方,让学生体会乘方运算是一种比乘法还要高级的运算,提高学生学习兴趣。
教学重难点
重点:幂的乘方法则的理解和应用。
难点:幂的乘方与同底数幂的乘法运算性质的区分。
教学方法及教具准备
教学方法:思考—探索—发现—归纳教具准备:多媒体演示
教学过程
一﹑复习
1﹑学生叙述同底数幂的`乘法运算法则,并用字母表示。 an=am+n(m﹑n都是正整数)
2﹑am·
用语言叙述为:同底数幂相乘,底数不变,指数相加。
3﹑复习练习⑴102×104=xx⑵an+1×an—1=xx_ ⑶2×2=xx ⑷x·x·x·x=xx_ n n 2 2 2 2
二﹑知识准备
1﹑一个正方体的棱长是10cm,则它的体积是多少?103=10×10×10 2﹑一个正方体的棱长是102cm,则它的体积是多少?3﹑100个104相乘怎么表示?又该怎么计算呢?(104)100=104×104×?×104(100个104)4﹑猜一猜m ··a(乘方的意义)(am)100=am·am· =am+m+···m(同底数幂的乘法法则)=a 100m(乘法的意义)
三﹑新授1﹑猜一猜
(am)n=amn(m,n为正整数)推导:
(am)n= am·am·
··am(n个am)=am+m+···+m(n个m)=a mn结论:幂的乘方的运算法则:(am)n=amn(m,n为正整数)用语言叙述:幂的乘方,底数不变,指数相乘。
2﹑师生共同完成。(1)(103)5(2)(a4)2(3)(am)2(4)—(x4)3解:
(1)原式=103×5=1015(2)原式=a4×2=a8(3)原式=a m×2 =a 2m(4)原式=—x12 3﹑学生练习
(1)(106)2(2)(am)4m是正整数(3)—(y3)2(4)(—x3)2(5)(an)3(6)—(x2)m 4﹑判断正误,错误的请改正。
(1)x·x=2x(2)x+x=x(3)a·a=a(4)—(a3)4=a12 4 2 6 2 2 4 3 3 3在讲解的过程中强调同底数幂的乘法与幂的乘方的区别,以及符号的注意。
5﹑计算
(1)x2·x4+(x3)2(2)(a3)3·(a4)3这两题是混合运算,先乘方后乘法。 6﹑公式的逆向应用m nn =an若(am)n=am则am =(am)n =(an)m例如:
x12=(x2)() =(x6)()=(x3)() =(x4)()=x7?x()=x?x() a3m=(a3)()=(am)()=a3·a()=am·a() 7﹑公式逆用的例题
1、若am=2,an=3,求① am+n的值。
② a 3m+2n的值。
2、若9×27x= 34x+1,求x的值。
四﹑知识比较五﹑板书设计六﹑课堂小结
本节课学习了幂的运算的第二种,幂的乘方,掌握新知识的同时,
但不能混淆,也就是说不要把幂的乘方与同底数幂的乘法搞混。另一方面掌握基本知识的同时也要学会灵活运用。
网站导航