《最大公因数》教学设计优秀
老地方整理的《最大公因数》教学设计优秀(精选4篇),希望这些优秀内容,能够帮助到大家。
《最大公因数》教学设计优秀 篇1
教学内容:
人教版五年级第十册66—69页最大公因数。
教学目标:
1、理解公因数,最大公因数和互质数的概念。
2、初步掌握求最大公因数的一般方法。
3、培养学生思维的有序性和条理性。
4、感受数学价值并体验数学与生活实际的联系,培养学生热爱生活的情感。
教学重,难点:
1、理解公因数,最大公因数,互质数的概念。
2、求最大公因数的一般方法。
教具准备:
多媒体教学课件。
教学过程:
一,师生共研,学习新知:
我们已经会求一个数的因数,那么今天我们来看两个数的因数又该怎样来求呢?
出示课件:
16的因数有:1、2、4、8、16
12的因数:1、2、3、4、6、12
那么既是16又是12的因数是:1、2、4
16和12的公有因数中最大的一个是:4
出示课件:
16的因数:1、2、4、8、16
12的因数:1、2、3、4、6、12
8的因数:1、2、4、8
师:我们就把1、2、4叫做16、12和8的什么呢?
生:公因数
师:4就是16、12和8的什么呢?
生:最大公因数。
师:请同学用自己的话说一说公因数是什么意思?
生:几个数公有的因数,就叫公因数。
生:就是几个数都有的因数,就叫公因数。
师:同学谁能说一下什么又是最大公因数呢?
生:几个数公因数里面最大的一个,就叫最大公因数。
师生共同总结概念:
公因数:几个数公有的因数,叫做这几个数的公因数。
最大公因数:几个数公因数里最大的一个,叫做这几个数的最大公因数
二、巩固练习,加深理解:
出示课件:
同学们能不能找出15和18的公因数,再找出它们的最大公因呢?
15的因数18的因数15的因数18的因数
不清
15和18的公因数
三、合作探究,认识互质数
1、5和7的公因数和最大公因数各是多少?
5的因数:1、5.7的因数:1、7。
5和7的公因数有:1.5和7的最大公因数是:1。
2、7和9呢?
7的因数:1,7.9的因数:1,3,9。
7和9的公因数有:1.7和9的最大公因数是:1
指名回答:并让学生说出自己的看法和理由。
师总结:公因数只有1的两个数,叫做互质数。
同学们认识了公因数和最大公因数?同学们想不想去求两个数的最大公因数呢?
四、深化练习、掌握方法:
那么大家想一想18和30的最大公因数怎么去求呢?
小组讨论方法:小组代表发言汇报讨论结果。
师引导出用分解质因数的方法,18=2×3×330=2×3×5
归纳出:18和30的公有的质因数是2和3,那么最大公因数就是2×3=6
能不能用更简便的方法呢?
把两个短除法合并成一个短除法
21830→用公有的质因数2除
3915→用公有的质因数3除
35→除到两个商是互质数为止
把所有的除数乘起来,得到18和30的最大公因数是
2×3=6
学生总结短除法求最大公因数的方法。
求两个数的最大公因数,一般先用这两个数公有的质因数连续去除,一直除到所得的商是互质数为止,然后把所有的除数连乘起来。
鼓励学生用不同的方法去完成练习。
求12和20的最大公因数
学生动手练习,师巡视指导,学生上黑板演示过程。
五、小小能手、我来闯关:
第一关:填一填
1.15的因数有(),20的因数有()它们的公因数有(),最大公因数是()。
2.8和9的`公因数有(),最大公因数是()
第二关:判一判
1、公因数有1的两个数是互质数()。
2.12的因数只有2、3、4、6、12。()
3、成为互质数的两个数一定都是质数。()
第三关:做一做
木材市场运来一批长12米,16米和20米的木材,把这三种长度的木材截成同样长,最长可以截成每根是多少米?
六、全课小节、畅谈收获:
学生谈本节课上的收获。师总结本节课主要内容并指出我国古代的《九章算术》已经有求两个数最大公因数的方法了对学生进行德育教育,激发学生的民族自豪感。
七、板书设计:
最大公因数
公因数:几个数公有的因数。
最大公因数:公因数里最大的一个。
互质数:公因数只有1的两个数。
把18和30分别分解质因数
218230
39315
35
18=2×3×3
30=2×3×5
18和30的公有质因数是2和3,因此:
18和30的最大公因数是2×3=6
合并两个短除法
21830→用公有的质因数2除
3915→用公有的质因数3除
35→除到两个商是互质数为止
把所有的除数乘起来,得出18和30的最大公因数是2×3=6
教学反思
教材对求最大公因数的编排,只是让学生用边长是整分米数的正方形地砖把贮藏室的地面铺满(使用的地砖都是整块),可以选择边长是几分米的地砖?边长最大的是几分米?由此引出最大公因数,教学中根据学生年龄特征,让学生用不同的小正方形摆拼、观察、思考,重视知识形成过程,同时,渗透由特殊到一般的不完全归纳法的数学思想。在摆拼过程中教师和学生一起操作,引发学生强烈的兴奋感和新切感,拉近了师生间的距离,营造了和谐、活跃、向上的学习氛围。
1、借助操作活动,经历概念的形成过程。
本节课以直观的操作活动,让学生经历公因数和最大公因数概念的形成过程。这样安排有两点好处:一是学生通过操作活动,能体会公因数的实际背景,加深对抽象概念的理解;二是有利于改善学习方式,便于学生通过操作和交流经历学习过程。学生通过操作,发现用边长1厘米、2厘米、4厘米的正方形都正好铺满长16厘米,宽12厘米的长方形。在此基础上,引导学生思考1、2、4这些数和16、12有什么关系。这时揭示公因数和最大公因数的概念,突出概念的内涵是“既是……又是……”即“公有”。并在此基础上,借助直观的集合图显示公因数的意义。实实在在让学生经历了概念的形成过程,效果较好。
2、预设探究过程,增强学生主体意识。
为了解决问题,学生充分调动了已有知识经验、方法、技能,找出了各种求“18和27的公因数和最大公因数”的方法。在这个过程中,由学生自己建构了公因数和最大公因数的概念,是真正主动探索知识的建构者,而不是模仿者,充分的发掘了学生的自主意识,也充分体现了教师驾驭教材,调控学生的能力。
3、提倡思考方法的多样化。
在教学中,我把重点放在找两个数的公因数的方法上,鼓励学生找最大公因数方法的多样化。学生可能想到三种方法,通过讨论,引导学生对方法进行优化,我认为用短除法求最大公因数是一个很有效、很简便的方法,应该让学生掌握。在这中间教师应注意引导、小结、鼓励,重视方法和策略的渗透,以提高学生的学习能力
《最大公因数》教学设计优秀 篇2
教学内容:
课本 P79~81 例 1、例 2。
教学目标:
1.知识与技能:理解公因数、最大公因数的意义,初步掌握求两个数的最大公因数的方法。
2.过程与方法:使学生经历理解公因数、最大公因数的意义,初步掌握求两个数的最大公因数的方法的过程,培养学生观察、比较、分析和概括的能力。
3.情感、态度与价值观:在师生共同探讨的学习过程中,激发学生的学习兴趣,体会数学与生活的联系,渗透事物是普遍联系的和集合的数学思想。
教学重点:
理解公因数、最大公因数的意义,初步掌握求两个数的最大公因数的方法,初步了解算理。
教学难点:
了解求两个数的最大公因数的计算原理。
教学用具:
自制课件。
教学过程:
一、复习导入
1.导语:一年一度的运动会离我们越来越近了。五年级的同学们想用队列表演来展现五年级同学们的风采。可是在训练过程中发现了一个问题:两个排的学生人数不一样,一排有 16 人,二排有 12 人,如果两排的学生单独列队,各自可以有几种不同的列队方法?怎样确定?
2.叙述:同学们学以致用的能力还真是很强,知道会用因数的`知识解决生活中的实际问题。今天我们就继续来研究有关因数的问题。(板书题目:因数)出示视频4小明家装修客厅铺地砖的视频短片。
[从学生的实际生活引入,可以激发学生的学习兴趣。]
二、探索新知
1.出示动画8用正方形摆长方形的动画,请同学们帮帮忙,试着设计一下。
2.探究方法。
同学们先独立思考,再小组交流、讨论。
3.全班交流。
(1)说一说你是怎样安排的?
(2)为什么找 16 和 12 公有的因数就可以?出示动画9、找16和12公因数的动画
4.思考:像 1、2、4 这样,既是 16 的因数,又是 12 的因数,这样的数你能给它们起个名字吗?其中最大的数是谁?你能给它起个名字吗?
过渡语:今天我们就重点来研究最大公因数。
5.想一想:前一段我们已经学过了因数,今天又认识了公因数,你能谈谈它们两者的区别吗?
6.说一说:最大公因数和公因数有什么关系呢?
7.试一试:你能找到 18 和 24 的公因数和最大公因数吗?
8.练习:口答最大公因数。
4 和6 24和8 5和7 6和11
问:你是怎样答出的?能说一说过程吗?
9.除了找因数,求最大公因数的方法外,还有没有其他求最大公因数的方法呢?
分解质因数法。
10.练习:求 24 和 36 的最大公因数(用喜欢的方法求)。
[在学生经历理解公因数、最大公因数的意义,初步掌握求两个数的最大公因数的方法的过程中, 培养了学生的观察、比较、分析和概括的能力。]
三、巩固练习
1.选两个数求最大公因数
12 和 18
99 和 132
24 和 30
39 和 65
2.找最大公因数。
(1)A=2×2×5×7
B=2×3×7
(A,B)=?
(2)甲数=A×B×C
乙数=D×E×F
(甲数,乙数)=?
3.反馈练习。
(1)直接写出下面各组数的最大公因数。
(27、9)(17、51)(13、39)((3、8)
(13、11)(15、16)(4、6)(6、8)
(8、24)(15、30)(16、48)(5、11)
(11、12)(13、17)
(2)填空。
小于10的最大偶数与最小合数的最大公因数是( )。
小于10的最大奇数与奇数中最小的质数的最大公因数是( )。
最小的质数与最小的合数的最大公因数是( )。
自然数中最小的两个质数的最大公因数是( )。
小于10的最大两个合数的最大公因数是( )。
甲数在20至30之间,乙数在30至40之间,甲乙两个数的最大公因数是12,甲数是( ),乙数是( )。
四、全课总结
你对今天的课有什么评价?谈谈你的感想好吗?
板书设计:
最大公因数
16 的因数:1,2,4,8,16
12 的因数:1,2,3,4,6,12
16=2 × 2 × 2 ×2 18= 2 ×3×3
12=2 × 2 × 3 24= 2 ×2×2×3
(16,12)=2 × 2=4 (18,24)=2×3=6
《最大公因数》教学设计优秀 篇3
教学内容:
课本P81的学习内容和练习十五的练习。
教学目标:
1、使学生加深对公因数和最大公因数意义的理解,掌握求两个数最大公因数的方法。
2、能在练习的过程中发现求两数最大公因数的两种特殊情况。
3、体现算法的多样化和个性化,培养学生独立思考和合作学习的能力。
教学重点:
掌握找两个数的最大公因数的方法
教学难点:
掌握两种特殊情况下求两个数最大公因数的方法。
教学过程:
一、激趣引入
师:同学们还记得什么是公因数,什么是最大公因数吗?请你根据已知的信息,快速找出15和20的公因数与最大公因数。
15的因数:1,3,5,15
20的因数:1,2,4,5,10,20
15和20的公因数有( ),最大公因数是( )。
(指名口答加课件订正)
师:在接下来要学习的分数计算和一些解决实际问题中,我们经常要用到最大公因数的知识。所以今天我们就一起来学习怎样求最大公因数。
(板书:求最大公因数)。
二、交流展示
1、小组交流预习成果,初步归纳求最大公因数的方法。
师:昨天同学们都进行了预习,你们找到求最大公因数的方法了吗?请在小组内交流一下。
2、预习成果展示,掌握求最大公因数的方法。
师:请一位同学来汇报一下你是怎样求18和27的最大公因数的?
生:可以先分别找出18和27的因数,再找出它们的公因数,其中最大的就是最大公因数。
18的因数:1,2,3,6,9,18
27的因数:1,3,9,27
18和27的最大公因数是9。
师:这种方法先写出两个数的因数,再找出它们的公有因数,其中最大的就是最大公因数。所以我们在写出两个数的因数后,应该写上这样一句话:18和27最大公因数是9。
3、交流互动,感受求最大公因数方法的多样性。
除了这种方法,同学们还会其他方法吗?请同学拿着学案纸上台投影展示汇报。
预设
(1)课本第二种
18的因数:1,2,3,6,9,18
其中1、3、9也是27的因数,所以1、3、9是18和27的公因数,9是它们的最大公因数。
师:这种方法先找出18的因数,再看这些因数中谁是27的因数,那它们就是18和27的公因数,最大的一个自然就是最大公因数。能够先找18的因数,能不能先找27的因数呢?(能)
师:(指着这种方法)我们只是想找出它们的最大公因数,大家动脑筋思考一下,这种方法还能不能更简化和优化一些?(引导学生发现,写出18或27的`因数后,从大到小看谁是另一个数的因数,满足的第一个就是最大公因数)
(2)其它的方法
分解质因数法和短除法根据实际情况灵活处理。
三、质疑点拨。
1、预习评价,纠错巩固。
师:通过刚才的学习,你掌握了求最公因数的方法了吗?老师在课前收集了几份预习作业,你能发现这些练习的错误或做得不够好的地方吗?(投影展示典型错例。)
2、阅读课本,提出质疑。
师:现在请同学们再阅读课本和反思刚才的学习过程,还有什么疑问吗?(课前了解学案再做预设)
3、方法归纳,点拨提升。
其实两个数的公因数和它们的最大公因数之间也存在某种关系,你发现了吗?(多请几个学生来汇报他们的答案,并引导学生观察例2的板书,以及学案上多个例子,发现公因数是最大公因数的因数。)
师:所有公因数都是最大公因数的因数。我们可以利用这个发现快速地检验自己是否找对了公因数和最大公因数。(让学生用例题和学案上1,2个例子来试试怎样检验)
师:回顾刚才大家介绍的多种求最大公因数的方法,其中这种做法(指着黑板)直接根据最大公因数的定义来找,属于基本方法,每个同学都应该理解和掌握。在这种方法基础上,同学们可以选择自己喜欢和擅长的方法去求最大公因数。
四、练习提高。
师:现在老师马上考考大家,你有信心做对吗?
1、求下面每组数的最大公因数。
15和12 30和45
2、找有倍数关系的两个数、互质数关系两个数的最大公因数的规律。
师:看来大家掌握得都不错,都能做对。老师要提高难度,不仅要做对,还要找出规律。请完成课本P81做一做,完成后在小组里订正和说一说自己的发现。
4和8 16和32 1和7 8和9
(1)汇报最大公因数答案。
(2)说一说自己的发现。(多请几个学生说说发现,逐渐归纳成结论)
师:当两数成倍数关系时,较小的数就是它们的最大公因数。当两数只有公因数1时(也就是大家在预习时在你知道吗里面了解到的互质数),它们的最大公因数也是1。
(3)教师小结
师:像这样能够直接看出最大公因数的,就不用再从头去找公因数了,也就是不用写出计算过程,直接写出谁和谁的最大公因数是几就可以了。你们掌握了找最大公因数的两种特殊情况了吗?请迅速完成课本82页第3题,直接填写在书上。
3、选出正确答案的编号填在横线上。
(1)9和16的最大公因数是()。
A、1 B、3 C、4 D、9
(2)16和48的最大公因数是()。
A、4 B、6 C、8 D、16
(3)甲数是乙数的倍数,甲、乙两数的最大公因数是()。
A、1 B、甲数 C、乙数 D、甲、乙两数的积
师:看来直接找两个数的最大公因数并不能难倒大家,现在老师看看大家能不能运用知识来解决一些问题。
4、写出下列各分数分子和分母的最大公因数。
( ) ( ) ( ) ( )
《最大公因数》教学设计优秀 篇4
一.教学设计学科名称:
北师大版数学五年级上册《找最大公因数》
二.所在班级情况,学生特点分析:
我校地处城郊,所带班级学生共25人,学生的思维比较活跃,比较善于提出数学问题,能在小组合作学习中主动探究知识。本册一单元,学生已经理解了因数和倍数的意义,能用乘法算式、集合等方式列举出一个数的因数。因此用列举法找最大公因数没有困难。而利用因数关系、互质数关系找还有一定的难度。因为学生不易发现这两个数具有这些关系。
三.教学内容分析:
教材直接呈现了找公因数的一般方法:先用想乘法算式的方式分别找出12和18 的因数,再找出公因数和最大公因数。在此基础上,引出公因数与最大公因数的概念。教材用集合的方式呈现探索的过程。在练习1、2中引出了用因数关系、互质数关系找最大公因数,教师要引导学生发现这个方法并会运用。教师要注意让学生经历知识的形成过程,要重视引发学生的数学思考。
四.教学目标:
知识与技能:探索找两个数的公因数的方法,会用列举法找出两个数的公因数和最大公因数。
过程与方法:经历找两个数的公因数的过程,理解公因数和最大公因数的意义。
情感、态度与价值:培养学生对学习数学的兴趣。通过观察、分析、归纳等数学活动,体验数学问题的探索性和挑战性,感受数学思考的条理性。
五.教学难点分析:
教学重点:探索找两个数的公因数的方法,会用列举法找出两个数的公因数和最大公因数。
教学难点:经历找两个数的公因数的过程,理解公因数和最大公因数的意义。
六.教学课时:
一课时
七.教学过程:
(一)复习
师:出示3×4=12,( )是12的因数。
生:3和4是12的因数。
(二)探究新知
1、认识公因数和最大公因数
(1)师:除了3和4是12的因数,12的因数还有哪些?
生独立完成后汇报,板书 12的因数有:1、2、3、4、6、12。
师:要找出一个数的全部因数,需要注意什么?
生:要一对一对有序地写,这样才不会遗漏。
师:照这样的方法,请你写出18的全部因数。
生独立写后汇报:18的.因数有:1、2、3、6、9、18
(此时出示集合图)
师:在这两个圈里,应该填上什么数?请大家完成正在书45页上。
生做后汇报师板书于圈中。
(2)师:请大家找一找在12和18的因数中,有没有相同的因数,相同的因数有哪几个。
生找出12和18相同的因数有:1、2、3、6
师:像这样,既是12的因数,又是18的因数,我们就说这些数都是12和18的公因数。
师:这里最大的公因数是几?
生:最大是6。
师:6就是12和18的最大公因数。这就是我们这节课学习的内容——找最大公因数。
板书课题:找最大公因数
(此时出示集合图)
师:中间这一区域有什么特征?应该填什么数字?独立思考后小组讨论
(生分组讨论)
汇报:中间区域是12的因数和18的因数的交叉区域,所填的数应该既是12的因数又是18的因数,也就是12和18的公因数填在这里。
师:请大家完成这个题。(生做后订正)
2、探索找最大公因数的方法
(1)列举法
刚才我们找最大公因数的方法叫做列举法。(板书:列举法)
请大家用这种方法找出下面每组数的最大公因数。 9和15
(2)利用因数关系找
师:请大家翻到书第45页,独立完成第一题。
生汇报:
8的因数: 1、2、4、8
16的因数: 1、2、4、8、16
8和16的公因数: 1、2、4、8
8和16的最大公因数是 8
师引导学生观察最后一句,想想8和16之间是什么关系,与他们的最大公因数有什么关系?
生独立思考后分组讨论。
生汇报:8是16的因数,所以8和16的最大公因数就是8。
师引导生归纳并板书:如果较小数是较大数的因数,那么较小数就是这两个数的最大公因数。(板书:用因数关系找)
练习:找出下面每组数的最大公因数。 4和12 28和7 54和9
(3)利用互质数关系找
师:请大家独立完成第二题。
生汇报:
5的因数: 1、5
7的因数: 1、7
5和7的最大公因数是 1
师引导学生观察最后一句5和7之间是什么关系,与他们的最大公因数有什么关系?
生独立思考后分组讨论。
生汇报:5和7都是质数,所以5和7的最大公因数就是1。
师:像这样只有公因数1的两个数叫互质数。如果两个数是互质数,那么它们的公因数只有1。(板书:用互质数关系找)
练习:找出下面每组数的最大公因数。 4和5 11和7 8和9
(4)整理找最大公因数的方法
师:今天我们学习了用哪些方法找最大公因数?
生:列举法,用因数关系找,用互质数关系找。
师:我们在做题时,要观察给出的数字的特征选用不同的方法。
(三)练习
书46页3、4、5题。生独立完成,师巡视指导。
(四)全课小结
这节课你有什么收获?
八.课堂练习:
在括号里填写每组数的最大公因数
6和18( ) 14和21( ) 15和25( )
12和8( ) 16和24( ) 18和27( )
9和10( ) 17和18( ) 24和25( )
九.作业安排:
完成练习册上的习题
十. 附录(教学资料及资源):
1、教师用书:北师大版五年级数学上册
2、数字卡片
十一. 自我问答:
短除法求最大公因数在书中暂时没有出现,只在求最小公倍数后以“你知道吗”的形式出现,但这种方法我觉得很实用,不知教材的意图是什么?究竟怎样处理?
教学反思:
本节课是在学生掌握了因数、倍数、找因数的基础上进行教学,通过解决故事中的问题,让学生逐层深入地懂得找公因数的基本方法。在此基础上,引出公因数和最大公因数的概念,在填写公因数时,学生往往容易出现重复的现象。
在教学过程中,我鼓励孩子归纳总结找最大公因数特征和方法。先看两个数是不是倍数关系,如果是倍数关系,那么小的那个数就是最大公因数。如果两个数是互质数或者是相邻的两个自然数,那么这两个数的最大公因数就是1。
找最大公因数时,我向学生介绍了短除法,当数字比较大时,用短除法比较简单。
网站导航