一元二次方程说课稿
老地方整理的一元二次方程说课稿(精选4篇),希望这些优秀内容,能够帮助到大家。
一元二次方程说课稿 篇1
[教材分析]
中学阶段我们研究的多项式函数中有二次函数,研究的几何图形中有二次曲线。因此一元二次方程便成为了方程中研究的重要内容。一元二次方程有根与系数关系,求根公式向我们揭示了两根与系数间的密切关系,而根与系数还有更进一步的发现,这一发现在数学学科中具有极强的实用价值,本节内容既是代数式、一元一次方程和一元二次方程求根公式等知识的进一步深化,又蕴含有丰富的数学思想方法,也为学生们将来的学习打下了必要的基础。
[学生分析]
进入了初二下半学期,随着年龄的增长以及实验几何向论证几何的逐步推进,学生们的逻辑推理能力已有了较大提高。因此在学过了一元二次方程的解法后,自主探究其根与系数的关系是完全可能的。再加上我所执教的学生,他们有着较强的认知力与求知欲,
基于以上思考,我在设计中扩大了学生的智力参与度,也相对放大了知识探索的空间。
[教学目标]
在学生探求一元二次方程根与系数关系的活动中,经历观察、分析、概括的过程以及“实践——认识——再实践——再认识”的过程,得出一元二次方程根与系数的关系。
能利用一元二次方程根与系数的关系检验两数是否为原方程的根;已知一根求另一根及系数。
理解数学思想,体会代数论证的方法,感受辩证唯物主义认识论的基本观点。
[教学重难点]
发现并掌握一元二次方程根与系数的关系,包括知识从特殊到一般的发生发展过程
[教学过程]
(一)复习导入
请学生求解表格内的方程,完成解法的交流以及求根公式的复习,求根公式向我们揭示了两根与系数间的关系,那么一元二次方程根与系数间是否还有更深一层的联系呢?由此疑问,导入新课。
(二)探求新知
数学学科中由数到式的结构编排,让我们想到了从两根运算上的最简组合:和差积商展开进一步研究。初探新知中,我将学生们分成两组,分别对二次项系数为 1 的一元二次方程两根进行和差积商的运算,之后将结果汇总展示,共同观察与系数的联系。我在这些方程中安排了两个无理根方程。当学生们发现这两个无理根在求和,求积后,竟变成了有理数,而且每一组两根和(积)都与系数有着密切的联系,此时的他们不难对两根和与两根积产生关注,经历了对二次项系数为1的一元二次方程两根和差积商的研究后,确定了课题并获得猜想:“两根和等于一次项系数的相反数, 两根积等于常数项。”对于这一猜想,会有学生提出不同看法,他们提出研究二次项系数非 1 的一元二次方程。学生的质疑启动再探新知。直接研究一元二次方程两根和、两根积与系数的关系。这一环节中我不再给出具体的.方程要求研究,故除了部分同学自定义方程求根求和求积后产生猜想,还有部分同学对仍保留在板书部分的求根公式着手进行两根和,积的运算。这两种方案齐头并进,当前者通过不断验证来说明他们猜想的可靠度时,后者通过论证,在严格意义下,说明了此结论的正确性。对于论证中学生出现的问题,我们在第一时间内揪错指正,
在知识初探与再探后,学生获得了新知,得到了一元二次方程根与系数的关系,
三、训练感悟
我将之前从学生那里收集来的错解对照表中方程,询问检验其正误的方法。学生根据已有经验,将其代入方程,进行检验。为寻求更为简便的方法,引出作用一,利用根与系数的关系,不解方程检验两数是否为原方程的根。我再给出两例,便于巩固练习,更明确了只有当两数和(积)同时满足方程两根和(积)的时侯,才是正确的根。当学生们正为找到了一种行之有效的检验方法,高兴不已的时候。突然间,表格中的数据丢失了,我分别隐去了方程的一根及b,c,a三个系数。为了将材料修复,学生小组展开热烈的讨论。有了上一题的经验,学生们会利用根与系数关系,不解方程,求出另一根及系数。也会使用代入求解的方法解题,通过新旧方法的比较,在训练中获得感悟:方法的选择在于简便,学生们在选择了恰当的方法后,修复了材料也巩固了新知。
四、总结提升,
由学生回顾知识的发生发展及应用过程,以“我的收获” 与“我的疑惑”交流心得。我再帮助学生整理所学知识,引导领会数学的思想。我还会自豪的告诉他们,数学家们还发现了存在于一元n次方程中的根与系数的普遍关系,这一内容将在高数中有所涉及,激励奋进
五、分层作业,
[设计意图]
现在的设计较之以往,有所继承,有所变革。
1 研究启动入口不同
过去我总是先给出若干具体方程要求学生求根,并计算两根和(积),作出猜想。这样的数学后曾有学生问我:“老师为什么会想到两根和(积)与系数的关系,而不是其它?”这种疑问的产生一定与过去设计指定了学生的活动过程有关,为了给学生的活动指向更为宽泛,让两根和积与系数的研究更显合理, 现在的设计中主要体现了由数到式的研究,从两根和差积商的重组合再有所观察,有所挑选,方才定位于两根和(积)作进一步的探究。这种设计正是从数学内部下了功夫,由知识线索的连贯性,师生共同理顺了实验对象的来龙去脉,从数学本身上培养了学生的观察、分析、概括的综合能力。
2探究部分两步走
我将二次项系数为1,非 1的一元二次方程分两次出现,分别放置与知识初探和再探两个环节,这样设计的原因有二:学生的认知能力总是有所差异的,如果将这些方程合二为一加以研究的话,一部分同学对别人获得的正确猜想是瞬间接受,却缺乏思维的参与。事实上,研究事物往往从简单到复杂,在这里,当a=1 时,易找规律,当 a ≠1后造成的认知冲突,更是激发了这一猜想的完善。其实这一串, 由实验——猜想——再实验——再猜想的思维过程,既符合认知规律,也是一种研究性学习的示范,一种创造性能力的培养。为了让每一个学生都亲身参与其中,真正感受由“实践——认识——再实践——再认识” 这一客观世界认知论的基本规律。便是我如此设计的原因之一。原因二:研究入口处,利用两根和差积商的结果,优选出对和积的研究。初探中二次项系数为 1 的方程两根计算足以起到这一筛选作用。因此在下一环节的再探新知中,便自然关闭了对两根差与商相对较为繁琐的计算,直接由两根和积入手研究与系数的关系,提高了研究的效率。
3 再探新知放手走
我没有再给出任何具体的方程以供研究,这里的放手,引出了学生不同的操作方法。一部分学生把注意力转放在求根公式上展开直接论证,就连另一部分学生自定义方程数据研究的方式也各不相同,他们有的翻开笔记本查阅之前解方程的资料;有的反凑特殊值方程;更有的会从中提炼出代数论证的方法;当然也有借助于计算器完成了繁琐的计算。
放手的探究,为了给学生更大的思维空间,让学生有更多方法的选择,从而展开自主的学习。
[尾声]
但原学生们带着对数学的兴趣与喜爱,在学的海洋里,奋勇搏击。而作为一名青年教师的我,亦将在教学的舞台上,不断求索。多由学生所想来引导;多设角度空间去探究;多从细节处渗透数学思想,充分利用数学课堂来达成文化传承与发展创新的协调统一。
一元二次方程说课稿 篇2
一、教材分析:
1、教材的地位和作用
一元二次方程是中学数学的主要内容之一,在初中数学中占有重要地位。通过一元二次方程的学习,可以对已学过实数、一元一次方程、因式分解、二次根式等知识加以巩固,同时又是今后学习可化为一元二次方程的其它高元方程、一元二次不等式、二次函数等知识的基础。此外,学习一元二次方程对其它学科有重要意义。本节课是一元二次方程的概念,是通过丰富的实例,让学生建立一元二次方程,并通过观察归纳出一元二次方程的概念。
2、 教学目标
根据大纲的要求、本节教材的内容和学生的好奇心、求知欲及已有的知识经验,本节课的三维目标主要体现在:
知识与能力目标: 要求学生会根据具体问题列出一元二次方程,体会方程的模型思想,培养学生归纳、分析的能力。
过程与方法目标:引导学生分析实际问题中的数量关系,回顾一元一次方程的概念,组织学生讨论,让学生自己抽象出一元二次方程的概念 。
情感、态度与价值观:通过数学建模的分析、思考过程,激发学生学数学的兴趣,体会做数学的快乐,培养用数学的意识。
3、 教学重点与难点
要运用一元二次方程解决生活中的实际问题,首先必须了解一元二次方程的概念,而概念的教学又要从大量的实例出发 。所以,本节课的重点是:由实际问题列出一元二次方程和一元二次方程的概念。鉴于学生比较缺乏社会生活经历,处理信息的能力也较弱,因此把由实际问题转化成数学方程确定为本节课的'难点。
二、教法、学法:
因为学生已经学习了一元一次方程及相关概念,所以本节课我主要采用启发式、类比法教学。教学中力求体现“问题情景---数学模型-----概念归纳”的模式。但是由于学生将实践问题转化为数学方程的能力有限,所以,本节课借助多媒体辅助教学,指导学生通过直观形象的观察与演示,从具体的问题情景中抽象出数学问题,建立数学方程,从而突破难点。同时学生在现实的生活情景中,经历数学建模,经过自主探索和合作交流的学习过程,产生积极的情感体验,进而创造性地解决问题,有效发挥学生的思维能力。
三、教学过程设计
1、创设情景,引入新课
因为数学来源与生活,所以以学生的实际生活背景为素材创设情景,易于被学生接受、感知。通过微机演示课本中的实例,并应用微机对其进行分析,充分显示微机演示中的生动性、灵活性,把图形的静变成动,增强直观性;同时帮助学生从实际问题中提炼出数学问题,初步培养学生的空间概念和抽象能力。情景分析中学生自然会想到用方程来解决问题,但所列的方程不是以前学过的,从而激发学生的求知欲望,顺利地进入新课。
2、 启发探究,获取新知
通过上述情景分析,让学生小组合作,列出方程。英国一位著名的数学教育心理学家曾 说:概念的教学要从大量实例出发,通过实例帮助完成定义,而不是教定义。因此,我在课本的基础上,又补充2个实例,而且,补充的例题所列出的方程正好是一个一次项为0,一个常数项为0 的特殊一元二次方程,这为后面概括得出一元二次方程的一般形式作准备。在学生列出方程后,对所列方程进行整理,并引导学生分析所列方程的特征,同时与一元一次方程相比较,找出两者的区别与联系,并类比一元一次方程的概念来得出一元二次方程的概念。由于一元二次方程的概念是本节的重点,所以在形成概念的过程中主要引导学生积极主动进行自我尝试、自我分析、自我修正、自我反思,让学生真正理解一元二次方程概念的内涵:(1)是整式方程(2)只含有一个未知数(3)未知数的最高次数是2。因为任何一个一元一次方程都可以化为 “ax+b=c(a≠0)”的形式,由此类比得出一元二次方程的一般形式为“ax2+bx+c=0(a≠0)”;并由一元一次方程项及系数的概念联想得出一元二次方程的项及系数的概念。
3、 练习反馈,应用拓展
在这个环节,我遵循巩固与发展想结合的原则,将学生分成小组,以小组竞赛活动的方式对本课知识进行巩固。不仅调动学生学习的积极性、主动性,增强学生积极参与教学活动意识和集体荣誉感,而且还能培养学生的观察能力和判断能力。同时,对概念进行变式应用,可以开拓学生思维,培养学生的创新意识。
4、 小结归纳,上升理性
引导学生从以下3个方面进行小结,
(1)本节课我们学习了哪些知识?
(2)学习过程中用了哪些数学方法?
(3)确定一元二次方程的项及系数时要注意什么?以培养学生的归纳、概括能力。
5、 作业布置
考虑带学生在知识、技能、能力等方面的发展都不尽相同,因此,我分层次布置作业,以便同时兼顾到学有困难和学有余力的学生。
四、教学评价
根据新课程标准的评价理念,在教学过程中,不仅注重学生的参与意识和学生对待学习的态度是否积极,而且注重引导学生尝试从不同角度分析和解决问题。
五、板书设计
略
一元二次方程说课稿 篇3
各位评委、各位老师:大家好!
我叫,来自。今天我说课的课题是《一元二次不等式的解法》(第一课时)。下面我将围绕本节课“教什么?”、“怎样教?”以及“为什么这样教?”三个问题,从教材内容分析、教法学法分析、教学过程分析和课堂意外预案等几个方面逐一加以分析和说明。
一.教材内容分析:
1.本节课内容在整个教材中的地位和作用。
概括地讲,本节课内容的地位体现在它的基础性,作用体现在它的工具性。一元二次不等式的解法是初中一元一次不等式或一元一次不等式组的延续和深化,对已学习过的集合知识的巩固和运用具有重要的作用,也与后面的函数、数列、三角函数、线形规划、直线与圆锥曲线以及导数等内容密切相关。许多问题的解决都会借助一元二次不等式的解法。因此,一元二次不等式的解法在整个高中数学教学中具有很强的基础性,体现出很大的工具作用。
2.教学目标定位。
根据教学大纲要求、高考考试大纲说明、新课程标准精神、高一学生已有的知识储备状况和学生心理认知特征,我确定了四个层面的教学目标。第一层面是面向全体学生的知识目标:熟练掌握一元二次不等式的两种解法,正确理解一元二次方程、一元二次不等式和二次函数三者的关系。第二层面是能力目标,培养学生运用数形结合与等价转化等数学思想方法解决问题的能力,提高运算和作图能力。第三层面是德育目标,通过对解不等式过程中等与不等对立统一关系的认识,向学生逐步渗透辨证唯物主义思想。第四层面是情感目标,在教师的`启发引导下,学生自主探究,交流讨论,培养学生的合作意识和创新精神。
3.教学重点、难点确定。
本节课是在复习了一次不等式的解法之后,利用二次函数的图象研究一元二次不等式的解法。只要学生能够理解一元二次方程、一元二次不等式和二次函数三者的关系,并利用其关系解不等式即可。因此,我确定本节课的教学重点为一元二次不等式的解法,关键是一元二次方程、一元二次不等式和二次函数三者的关系。
二.教法学法分析:
数学是发展学生思维、培养学生良好意志品质和美好情感的重要学科,在教学中,我们不仅要使学生获得知识、提高解题能力,还要让学生在教师的启发引导下学会学习、乐于学习,感受数学学科的人文思想,使学生在学习中培养坚强的意志品质、形成良好的道德情感。为了更好地体现课堂教学中“教师为主导,学生为主体”的教学关系和“以人为本,以学定教”的教学理念,在本节课的教学过程中,我将紧紧围绕教师组织——启发引导,学生探究——交流发现,组织开展教学活动。我设计了①创设情景——引入新课,②交流探究——发现规律,③启发引导——形成结论,④练习小结——深化巩固,⑤思维拓展——提高能力,五个环环相扣、层层深入的教学环节,在教学中注意关注整个过程和全体学生,充分调动学生积极参与教学过程的每个环节。
三.教学过程分析:
1.创设情景——引入新课。我们常说“兴趣是最好的老师”,长期以来,学生对学习数学缺乏兴趣,甚至失去信心,一个重要的原因,是老师在教学中不重视学生对学习的情感体验,教学应该充分考虑学生的情感和需要,想方设法让学生在学习中树立信心,感受学习的乐趣。根据教材内容的安排,我以学生熟悉的画一次函数图象、求一次方程和一次不等式的解为背景知识切入,设置一个练习题组,一方面让学生总结复习已有知识,为后面学习二次不等式的解法打下基础,做好铺垫,另一方面,使学生在自己熟悉的问题中首先获得解题成功的快乐体验,然后以2004年江苏省的一道高考试题为引子,引入本节课的新授内容。对于本题,引导学生,利用上面解练习题组1的方法,画出二次函数图象来解答。二次函数是初中数学的重要内容,本题又给出了函数图象上许多点,相信学生画出图象应该不成问题,只要教师适当点拨,学生不难得到正确答案。以高考试题为背景引入新课,可以提高学生兴趣,抓住学生眼球,吸引学生注意力,还可以让学生实实在在感受到,高考题就在我们的课本中,就在我们平常的练习中。
2.探究交流——发现规律。从特殊到一般是我们发现问题、寻求规律、揭示问题本质最常用的方法之一。我把课本例题1、2编为练习题组(一),交由学生用上面解高考题的方法——图象法去解,学生由于熟知二次函数图象,求解应该不会有太大的问题。在这个过程中,教师要启发引导学生注意对比两题的异同,组织引导学生展开交流讨论,探讨第(2)题能不能先把二次项系数化正以后再构造函数画图求解。然后达成共识,如果二次项系数为负数时,先做等价转化,把二次项系数化为正数再解,课本19页例3、例4作为题组(二),继续让学生用上面的图象法,由学生自己求解,这时我及时提示学生注意这两题与题组(一)中两题的不同(例1、例2对应方程都有两个不等实根,例3对应方程有两相等实根,例4对应方程无实根)。两个题组的练习之后,可以寻求解二次不等式的一般规律。
3.启发引导——形成结论。前面两个题组的四个小题,基本涵盖了一般一元二次不等式解的各种情况,进一步启发引导学生将特殊、具体题目的结论做一般化总结,与学生一起就 △>0,△<0,△=0 的三种情况,总结二次不等式ax2+bx+c>0或ax2+bx+c<0 (a>0)的解的情况应该水到渠成。至此,学生可以感受到,解二次不等式只须①将二次项系数化为正数,②求解二次方程 ax2+bx+c=0 的根。③根据①后的二次不等式的符号写出解集即可,必要时也可以结合图象写解集。这样我们就得到了二次不等式的另外一种解法(可称为“三步曲”法)。
4.训练小结——巩固深化。为了巩固和加深二次不等式的两种解法,接下来及时组织学生进行课堂练习,完成课本21页练习1-4题。本环节请不同层次的学生在黑板上书写解题过程,之后师生共同纠正问题,规范解题过程的书写。
5.延伸拓宽——提高能力。课堂教学既要面向全体学生,又应关注学生的个体差异。体现分类推进,分层教学的原则。为此,我又设计了一个提高练习题组,共有三道备选题目,以供程度较好学有余力的学生能够更好的展示自己的解题能力,取得更进一步的提高。
四.课堂意外预案:
新课程理念下的教学更多的关注学生自主探究、关注学生的个性发展,鼓励学生勇于提出问题,培养学生思维的批评性。在课堂上学生往往会提出让老师感到“意外”的问题,我在平时的教学中重视对“课堂意外预案”的探索和思考,备课时尽量设想课堂中可能会出现的各种情况,做到有备无患,以免在课堂中学生提出让自己出乎意料的问题,使自己陷入被动尴尬境地。结合以往经验,在本节课,我提出两个“意外预案”。
1.学生在做课本练习1(x+2)(x-3)>0 时,可能会问到转化为不等式组{ 或{ 求解对不对。学生提出的问题,想法非常好,应给予肯定和鼓励,这与下节简单分式不等式和高次不等式的解法有关,是解不等式的另一种解法——等价转化法,不在本节课之列。
2.根据以往的经验,在解(x-1)(x+2)>1一类的不等式的时候,由于受方程(x+1)(x+2)=0 可转化为x-1=0或x+2=0求解的影响,有可能会出现将不等式转化为不等式组{ 来求解的错误做法,教师要关注学生,及时发现问题并给予纠正,指出上面的转化不是等价转化。
以上是我对本节课的一些粗浅的认识和构想,如有不妥之处,恳请各位专家、各位同仁批评指正。谢谢大家!
一元二次方程说课稿 篇4
教材地位分析:
一元二次方程根与系数的关系是在学习了一元二次方程的解法和根的判别式之后引入的。它深化了两根与系数之间的关系,是我们今后继续研究一元二次方程根的情况的主要工具,是方程理论的重要组成部分。一元二次方程的根与系数的关系,在中考中多以填空,选择,解答题的形式出现,考查的频率较高,也常与几何、二次函数等问题结合考查,是考试的热点。
教材的处理:
一、教学目标:
1、掌握一元二次方程的根与系数的关系的关系并会初步应用。
2、提高学生分析、观察、归纳的能力和推理论证的'能力。
3、渗透由特殊到一般,再由一般到特殊的认识事物的规律。
4、通过学生探索一元二次方程的根与系数的关系,培养学生观察分析和综合、判断的能力。激发学生发现规律的积极性,鼓励学生勇于探索的精神。
二、教学重点难点及难点的突破
重点:根与系数的关系。
难点:对根与系数的关系的理解和推导。
难点的突破方法:由已知两根构造新方程入手,由学生观察并发现一元二次方程根与系数的关系,用求根公式再严格加以证明,证明的过程是一个再熟悉和再理解的过程。
三、教学构想:
在构思这节课时,感到教材中所提供的方法固然能更加直接的引出根与系数的关系,但忽略了定理最初形成的过程(即:为何要检验两根之和,两根之积?)。因此我根据前面所学内容,从已知两根求作方程入手,引导学生观察并发现根与系数的关系。此时所得出的恰好是二次项系数为1的方程,这种特殊的方程有这种规律,是不是对二次项系数不为1的方程也同样有这种规律呢?于是引出下文,并推及到韦达定理的出现与证明。然后加入对数学家韦达的介绍,及我国古代数学家在根与系数关系上的贡献,激发学生的爱科学,用科学的情感,提高学生对学习的兴趣。最后,再由学生自主小结,谈体会,给整节课画上圆满的句号。
四、教法、学法:
为了体现二期课改中“以学生为主体”的教育理念,在课程的引入和新授中充分地考虑在学生已有知识与新知识间架起一座桥梁,通过创设一定的问题情境,注重由学生自己探索,让学生参与韦达定理的发现、不完全归纳验证以及演绎证明等整个数学思维过程。
学生通过对所提问题的求解,在观察、归纳中发现一元二次方程的根与系数间的关系。从已知两根构造方程引入,积极配合使学生能观察出所给出的两根与所作方程系数的关系。比原先求出两根,验证两根之和,之积的难度提高了,但数学思维品质也相对提高了。实践证明,只要教学语言使用得当,问题情境设计得好,学生是能够从题目中去获得发现的。
教具,学具的选择:
采用电教手段,增大教学的容量和直观性,提高教学效率和教学质量。
教学流程:
1、复习提问
(1)写出一元二次方程的一般式和求根公式。
(2)求一个一元二次方程,使它的两根分别为
1)2和3 2)—4和7
3)3和—8 4)—5和—2
问题1:从求这些方程的过程中你发现根与各项系数之间有什么关系?
2、新课讲解:
如果方程x2+px+q=0有两个根是x1,x2,那么x1+x2=——p,x1x2=q
猜想:2x2—5x+3=0这个方程的两根之和,两根之积是否满足这个特征?
问题2:对于二次项系数不为1的一元二次方程两根之和,两根之积有怎样的特征?
引出韦达定理,并加以严格论证。
介绍数学家韦达。
3、巩固练习:
口答下列方程的两根之和与两根之积。
1)x2—3x+1=0
2)x2—2x=2
3)2x2—3x=0
4)3x2=0
判断对错,如果错了,说明理由。
1)2x2—11x+4=0两根之和11,两根之积4。
2)4x2+3x=5两根之和,两根之积。
3)x2+2=0两根之和0,两根之积2。
4)x2+x+1=0两根之和—1,两根之积1。
4、学生自主小结。
5、布置作业。
网站导航