《行程问题》教学设计
老地方整理的《行程问题》教学设计(精选4篇),希望这些优秀内容,能够帮助到大家。
《行程问题》教学设计 篇1
教学目标:
1.提出问题学生独立思考不能解答,通过阅读教材学习解题方法,培养学生的阅读意识。
2.利用坐标纸通过画图解答相遇问题,让学生感受到解题方法是多样的。
3.利用坐标纸通过画图解答相遇问题求出相遇时间。
教学重点:
利用坐标纸通过画图解答相遇问题求出相遇时间。
教学难点:
利用坐标纸通过画图解答相遇问题求出相遇时间。
教学过程:
一、提出问题,用坐标纸画图解决问题。
1.出示一张地图,找到北京西站、石家庄的位置。北京西站与石家庄站相距千米,一列货车和一列客车从两地相向而行,几小时相遇?
已知货车速度千米; 客车速度千米
路程 速度和=相遇时间
2.出示例5第五次铁路大提速后,z517次客车13:11从北京西站开出,15:51到达石家庄;z518次客车14:23从石家庄开出,17:10达到北京西站。这两列客车什么时间相遇?
师:z517次客车从北京西站开出, z518次客车从石家庄开出一定会怎么样?
生:一定会相遇。
师:一定会在某一时刻相遇,大约会在几点几分相遇呢?
(下午2点到4点之间)具体时刻会是几点几分?
(学生解决此问题较困难此时教师提出看书)
怎样解决,教材为我们介绍了一种方法。请同学们看书p58:
自己先看书,再小组交流,你看到了什么?怎样理解?
这样的小方格纸叫做坐标纸
每一个大格表示1小时,10个小格是一个大格
每一个小格表示6分钟
一端表示北京,另一端表示石家庄
两条线的交点大约为相遇时间,大约15:07 15:08
通过坐标纸解题应分为几步?
找出北京西站发出的车的起点和终点,进行连线
找出石家庄站发出的车的起点和终点,进行连线
交点就是它们的`相遇时间
用坐标纸解题应注意什么?
估点要准确
苗点要细些
结果要看准确
二、利用坐标纸解决问题:
p58 画一画:
p66 4看图回答问题
三、小结:
说一说今天学习的收获?
教学反思:
利用坐标纸通过画图解答相遇问题,让学生感受到解题方法是多样的。进一步培养学生认真仔细的习惯,利用坐标纸通过画图解答相遇问题求出相遇时间。
《行程问题》教学设计 篇2
教学目标:
1、通过小组合作、自主探究,使学生知道速度的表示法;理解和掌握行程问题中速度、时间、路程三个数量的关系。
2、通过课堂上的合作学习、汇报展示、互动交流,提高学生分析处理信息的能力,培养学生解决实际问题的能力。
3、让学生通过提出问题、解决问题,感受数学来源于生活,在交流评价中培养学生的自信心,体验到成功的喜悦。
教学重难点:
速度的概念及速度、时间与路程之间的关系。
教学准备:
各种交通工具的'速度调查。
教学过程:
一、创设情境,提出目标
1、创设情境:同学们乘坐过哪些交通工具,你知道他们的速度吗?
(1)学生自由发言。
(2)出示几种交通工具的速度:
自行车 每分钟行驶225米
公共汽车 每小时行驶30千米
摩托车 每小时行驶15千米
小汽车 每小时行驶60千米
师:可以看出,同学们真留意生活中的数学知识,这节课我们就来研究与速度有关的数学问题行程问题。
2、提出学习目标:请同学们想一想,哪些问题值得我们研究呢?
让学生说一说再出示目标:
(1)速度指的是什么?怎么表示?
(2)行程问题中有哪些数量?它们之间有什么关系?
[设计意图] 从学生已有的知识出发,充分联系学生的生活实际,使学生进一步体验数学来源于生活。同时激发发的学习动机,让他们带着明确的目标进行自学。
三、分层练习,拓展延伸
1、基本训练
(1)出示几种速度,用简便方法写出来(练习八第5题)。
猎豹奔跑的速度可大每小时110千米
蝴蝶飞行的速度可达每分钟500米
声音的传播速度是每秒钟340米
(2)练习八第6题。
2、拓展提高
(1)
速度时间 路程
225米/分12分
10小时1200千米
50米/秒 350米
学生独立计算,订正时,让学生说说是怎样做的?
(2)小明从家到学校要步行20分钟,他的步行速度是95米/分,每天上学放学要走两个来回。小明每天上放学一共要走多少米?
[设计意图]通过设计层次性作业,使各类学生对所学的知识有所巩固提高。
四、总结反思,布置作业
1、说说这节课的收获。
2、作业:练习八的第7、8、9和10题(第10题是提高题)。
《行程问题》教学设计 篇3
教学目标:
1、让学生利用路程、时间、速度三者之间的关系,借助画示意图解以现实为背景的应用题。
2、让学生利用画图直观分析、探究发现、充分发挥学生的主体作用,学生在轻松愉快的气氛中掌握知识。
3、在教师引导下结合实际创造有趣的情景,提高学生的学习兴趣,让他们在活动中获得成功的体验,培养学生的探索精神,树立学习的信心。
4、在《小组竞赛学习法》督促下,逐步引导学生自学 , 使学生的被动学习变为主动学习。
教学重难点
重点:通过学案引导学生分析例题 , 寻找等量关系列方程。
难点:
1、通过学案引导学生从不同角度来寻找等量关系,列方程。
2、通过小组竞赛做题的竞争 , 慢慢地培养学生学习的积极性 , 逐步加强学生的自学能力。
教学方法:《小组竞赛学习法》
教学设计
课前准备
创设悬念 提出问题。
(上课的提前一天或周五下午,给学生每人一份学案,让学生充分讨论准备迎接小组比赛,后面备有学案内容)
课堂教学过程
一、老师出示学案的答案(选做题暂不给答案 , 下课后,学生可用 U 盘烤走当参考),宣布评卷规则。要求:学案每做一题(不包括选做题),不管对错得 1 分,能作对的加一分,并会讲的再加一分,选做题做了并对且会讲的应加倍给分。 ( 选做题让教师讲解后再让学生讲的不加倍给分。
小组组员之间先互帮互学对改答案,准备迎接其它组的检查。(大约用 20 分 -30 分钟,小组准备的越充分越好,若多数学生没准备好,可以再多给点时间让其准备,千万不能打无准备之仗,准备不好的`话,先不小组比赛,下节课才小组比赛也行),此时老师巡回抽查每组中学生的自学情况,根据情况调整互帮互学时间,对于都不会的问题,教师可以演讲让优生先学会,再帮助差生学会。
二、小组推磨检查,一般每小组的前四名检查下组的后四名,( 8 人一个组)。
三、各组长统计分数并让被检组认可,教师统计各组分数, 对全班小组排列顺序,分数最低的小组起立向大家敬礼表示失败,(也可以对第一名小组奖励)教师把比赛结果记录在专用本子上,准备一周的总分评比。一周的总分数少的小组要替第一名小组打扫卫生一次。每周比赛结果也记录在专用本子上,准备一学期的总分评比。
四、布置下节自学任务而结束本节上课。
以下是备用内容
学生自学内容 (就是学案)
先给大家讲一个当代数学家苏步青教授故事,苏步青教授在法国遇到一个很有名气的数学家,这位数学家在电车里给苏教授出了个题目:
问题 1“ 甲乙两人,同时出发,相对而行,距离是 50 千米,甲每小时走 3km, 乙每小时走 2km ,问他俩几小时可以碰面?
苏教授一下子便回答出来了,你能回答上述问题吗?你能把解决的方法步骤写出来并给大家讲一下吗? ”
请 同学们先画出示意图:
再由图填空:甲乙相遇时,他们共行的路程为( )
从路程的角度分析:甲走的路程 + 乙走的路程为( )
从时间角度分析:甲走的时间 = 乙走的时间。
如果 设甲、乙相遇时他们所用时间为 x 小时,此时相等关系:
甲走的路程 + 乙走的路程) = ( )
即甲行走的速度×甲行走的( ) + 乙行走的( )×乙行走的时间 = ( )
《行程问题》教学设计 篇4
教学目的
1.知识与能力:使学生会分析不同类型的相遇及追及问题中的相等关系,列出一元一次方程解简单的应用题。
2.过程与方法:使学生加强了解列一元一次方程解应用题的方法步骤。
3.情感态度与价值观:通过小组合作,加强同学们之间的交流以及团结互助的精神。
教学重点
利用路程、速度、时间的关系,根据相遇及追及问题中的等量关系,列出一元一次方程。
教学难点
寻找相遇及追及问题中的等量关系。
教学过程
一、导入
想一想回答下面的问题:
1、A、B两车分别从相距S千米的.甲、乙两地同时出发,相向而行,两车会相遇吗?
2、如果两车相遇,则相遇时两车所走的路程与甲、乙两地的距离有什么关系?
3、如果两车同向而行,B车先出发a小时,在什么情况下两车能相遇?为什么?
4、如果A车能追上B车,你能画出线段图吗?
二、例题1
A、B两车分别停靠在相距240千米的甲、乙两地,A车每小时行50千米,B车每小时行30千米。若两车同时相向而行,请问B车行了多长时间后与A车相遇?
三、练习1
(1)挖一条长2200m的水渠,由甲、乙两队从两头同时施工。甲队每天挖130m,乙队每天挖90m,挖好水渠需要几天?
(2)A、B两车分别停靠在相距115千米的甲、乙两地,A车每小时行50千米,B车每小时行30千米,A车出发1.5小时后B车再出发。
若两车相向而行,请问B车行了多长时间后与A车相遇?
四、例题2
小明每天早上要在7:50之前赶到距离家1000米的学校上学,一天,小明以80米/分的速度出发,5分后,小明的爸爸发现他忘了带语文书,于是,爸爸立即以180米/分的速度去追小明,并且在途中追上他。
(1)爸爸追上小明用了多少时间?
(2)追上小明时,距离学校还有多远?
五、练习2
(3)A、B两车分别停靠在相距115千米的甲、乙两地,A车每小时行50千米,B车每小时行30千米,A车出发1.5小时后B车再出发。
若两车同向而行(B车在A车前面),请问B车行了多长时间后被A车追上?
(4)小王、叔叔在400米长的环形跑道上练习跑步,小王每秒跑5米,叔叔每秒跑7.5米。
(1)若两人同时同地反向出发,多长时间两人首次相遇?
(2)若两人同时同地同向出发,多长时间两人首次相遇?
六、归纳总结
1、如何区分相遇问题和追及问题?
2、解行程问题有何诀窍?相遇:相等关系:A车路程+B车路程=相距路程
追及:B车路程=A车先路程+A车后行路程或B车路程=A车路程+相距路程
3、在列一元一次方程解行程问题时,我们常画出线段图来分析数量关系。用线段图来分析数量关系能够帮助我们更好的理解题意,找到适合题意的等量关系式,设出适合的未知数,列出方程。正确地作出线段图分析数量关系,能使我们分析问题和解问题的能力得到提高。
七、作业布置
网站导航