网站导航
老地方 > 百科 > 教学教案 > 正文

一元一次不等式教学设计

2026/01/28教学教案

老地方整理的一元一次不等式教学设计(精选5篇),希望这些优秀内容,能够帮助到大家。

一元一次不等式教学设计 篇1

教学目标:

(知识与技能,过程与方法,情感态度价值观)

(一)教学知识点

1.一元一次不等式与一次函数的关系.

2.会根据题意列出函数关系式,画出函数图象,并利用不等关系进行比较.

(二)能力训练要求

1.通过一元一次不等式与一次函数的图象之间的结合,培养学生的数形结合意识.

2.训练大家能利用数学知识去解决实际问题的能力.

(三)情感与价值观要求

体验数、图形是有效地描述现实世界的重要手段,认识到数学是解决问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用.

教学重点

了解一元一次不等式与一次函数之间的关系.

教学难点

自己根据题意列函数关系式,并能把函数关系式与一元一次不等式联系起来作答.

教学过程

创设情境,导入课题,展示教学目标

1.张大爷买了一个手机,想办理一张电话卡,开米广场移动通讯公司业务员对张大爷介绍说:移动通讯公司开设了两种有关神州行的通讯业务:甲类使用者先缴15元基础费,然后每通话1分钟付话费0.2元;乙类不交月基础费,每通话1分钟付话费0.3元。你能帮帮张大爷选择一种电话卡吗?

2.展示学习目标:

(1)、理解一次函数图象与一元一次不等式的关系。

(2)、能够用图像法解一元一次不等式。

(3)、理解两种方法的关系,会选择适当的方法解一元一次不等式。

积极思考,尝试回答问题,导出本节课题。

阅读学习目标,明确探究方向。

从生活实例出发,引起学生的好奇心,激发学生学习兴趣

学生自主研学

指出探究方向,巡回指导学生,答疑解惑

探究一:一元一次不等式与一次函数的关系。

问题1:结合函数y=2x-5的图象,观察图象回答下列问题:

(1) x取何值时,2x-5=0?

(2) x取哪些值时, 2x-5>0?

(3) x取哪些值时, 2x-5<0?

(4) x取哪些值时, 2x-5>3?

问题2:如果y=-2x-5,那么当x取何值时,y>0 ? 当x取何值时,y<1 ?

你是怎样求解的?与同伴交流

让每个学生都投入到探究中来养成自主学习习惯

小组合作互学

巡回每个小组之间,鼓励学生用不同方法进行尝试,寻找最佳方案。答疑展示中存在的问题。

探究二:一元一次不等式与一次函数关系的简单应用。

问题3.兄弟俩赛跑,哥哥先让弟弟跑9 m,然后自己才开始跑,已知弟弟每秒跑3 m,哥哥每秒跑4 m,列出函数关系式,画出函数图象,观察图象回答下列问题:

(1)何时哥哥分追上弟弟?

(2)何时弟弟跑在哥哥前面?

(3)何时哥哥跑在弟弟前面?

(4)谁先跑过20 m?谁先跑过100 m?

你是怎样求解的.?与同伴交流。

问题4:已知y1=-x+3,y2=3x-4,当x取何值时,y1>y2?你是怎样做的?与同伴交流.

让学生体会数形结合的魅力所在。理解函数和不等式的联系。

精讲点拨

移动通讯公司开设了两种长途通讯业务:全球通使用者先缴50元基础费,然后每通话1分钟付话费0.4元;神州行不交月基础费,每通话1分钟付话费0.6元。若设一个月内通话x分钟,两种通讯方式的费用分别为y1元和y2元,那么 (1)写出y1、y2与x之间的函数关系式; (2)在同一直角坐标系中画出两函数的图象;(3)求出或寻求出一个月内通话多少分钟,两种通讯方式费用相同; (4)若某人预计一个月内使用话费200元,应选择哪种通讯方式较合算?

在共同探究的过程中加强理解,体会数学在生活中的重大应用,进行能力提升。

提高学生应用数学知识解决实际问题的能力

达标检测

展示检测内容

积极完成导学案上的检测内容,相互点评。

反馈学生学习效果

知识与收获

引导学生归纳探究内容

学生回顾总结学习收获,交流学习心得。

学会归纳与总结

布置作业

教材P51.习题2.6知识技能1;问题解决2,3.

板书设计

§2.5 一元一次不等式与一次函数(一)

一、学习与探究:

1.一元一次不等式与一次函数之间的关系;

2.做一做(根据函数图象求不等式);

3.试一试(当x取何值时,y>0);

4.议一议

二、精讲点拨:

三、知识与收获:

四、课后作业:

一元一次不等式教学设计 篇2

【教学目标】:

1、知识目标:能进一步熟练的解一元一次不等式,会从实际问题中抽象出数学模型,

会用一元一次不等式解决简单的实际问题。

2、能力目标:通过观察、实践、讨论等活动,积累利用一元一次不等式解决实际问题

的经验,提高分类考虑、讨论问题的能力,感知方程与不等式的内在联系,体会不等式和方程同样都是刻画现实世界数量关系的重要模型

3、情感目标:在积极参与数学学习活动的过程中,形成实事求是的态度和独立思考的习

惯;学会在解决问题时,与其他同学交流,培养互相合作精神。

【重点难点】:

重点:一元一次不等式在实际问题中的应用。 难点:在实际问题中建立一元一次不等式的数量关系。

关键:突出建模思想,刻画出数量关系,从实际中抽象出数量关系。注意问题中隐含的

不等量关系,列代数式得到不等式,转化为纯数学问题求解。

【教学过程】: 创设情境,研究新知

这个周末我们要去杜氏旅游渡假村,为此我们要做两个准备:先选择一家旅行社,然后购买一些必需的旅游用品。在这个过程中,我们会碰到一些问题,看同学们能不能用数学知识来解决。

问题1:中国旅行社的原价是每人100元,可以给我们打7。7折;蓝天旅行社的原价和他们相同,但可以三人免费,并且其他人费用打8折;根据我们的实际情况,要选择哪一家比较省钱?

(从生活中的问题入手,激发学生探究问题的兴趣,这是一个最优方案的选择问题,具有一定的开放性和探索性,解这类问题,一般要根据题目的条件,分别计算结果,再比较、择优。本题通过问题设置,培养学生分析题意的能力,分析题中相关条件,找到不等关系。让学生充分进行讨论交流,在活动中体会不等式的应用。在分析问题的过程中运用了“求差值比较大小”这一方式,使学生又掌握了一种新的比较两个量之间大小的方式;同时体会到分类考虑问题的思考方式) 观察探讨,实际操作

选定了旅行社以后,咱们要去购物了,正好商店为了吸引顾客在举行优惠打折活动

问题2:

甲、乙两商店以同样价格出售同样的商品,并且又各自推出不同的优惠方案: 甲店累计购买100元商品后,再购买的商品按原价的90%收费;在乙店累计购买50元商品后,再购买的商品按原价的95%收费。我们选择商店购物才获得更大优惠? 分析:这个问题较复杂,从何处入手呢? 甲商店优惠方案的起点为购物款达___元后; 乙商店优惠方案的.起点为购物款过___元后。 启发提问:我们是否应分情况考虑?可以怎样分情况呢?

(1)如果累计购物不超过50元,则在两店购物花费有区别吗?

(2)如果累计购物超过50元,则在哪家商店购物花费小?为什么?

关键是对于第二个问题的分类,鼓励学生大胆猜想,对研究的问题发表见解,进行探索、合作与交流,涌现出多样化的解题思路.教师及时予以引导、归纳和总结,让学生感知不等式的建模,在活动中体会不等式的实际作用。

小结:用一元一次不等式知识解决实际问题的基本步骤有哪些?实际问题 从关键语句中找条件

符号表达

1、 根据设置恰当的未知数

2、用代数式表示各过程量

3、寻找问题中的不等关系列出不等式

解不等式 注意不等式基本性质的运用

(本环节我设置学生分组合作共同讨论,由学生代表发言,互相补充,最后总结。学生会体会到本节课我们不仅仅是解了如何分析问题中的不等关系列出不等式,也尝试了利用分类的方法考虑问题,同时还学到了一种新的比较两个量大小的方法:求差比较法。体现了新课标提倡的学生主动,师生互动,生生互动的新的总结方式。) 预留悬念 要出游旅行,目的地的天气情况也是我们很关注的问题,下节课咱们再一起看看杜氏旅游渡假村所在地的天气如何,大家可以自己先去查查相关的资料。

(抛出学生感兴趣的问题,为下节课的教学内容打下了伏笔,做了很好的铺垫)

教学设计:

一元一次不等式的实际应用是人教版七年级下册第九章第二小节内容,是在学习了一元一次不等式的性质及其解法、用一元一次方程解决实际问题等知识的基础上,把实际问题和一元一次不等式结合在一起,既是对已学知识的运用和深化,又为下节一元一次不等式组的学习奠定基础,具有承上启下的作用;同时通过本节的学习,向学生渗透“求差比较两个量的大小”的方法,和分类考虑问题的探究方式,可以提高学生分析、解决问题的能力。

本节课的教学设计从以下几个方面进行设置:

1。、教学内容:

本节课的教学内容大多以实际生活中的问题情景呈现出来,给学生以亲切感,可以提高学生的学习兴趣,让学生感受到数学来源于生活,学生通过合作、努力解决问题,体会到学习数学的价值。

2、 组织形式:

本节课以开放式的课堂形式组织教学,让学生进行合作学习,共同操作与探索、共同研究、解决问题。由于本节教学内容的特点,教师无须过多讲解,只需引导、组织学生活动,有意识的让学生主动去观察、比较、分类、归纳,积极思考,并真正参与到学生的讨论之中。这节课成功与否,不在于教师的讲解本领,而在于调动、启发学生、提出问题的水平以及激起学生求知欲、培养他们学习数学的主动性的艺术高低。

3、 学习方式:

动手实践、自主探索是学习数学的重要方式,因此本节课改变了过去接受式的学习方式,学生不是等待知识的传递,而是主动的参与到学习活动中,成为学习的主体。

4、 评价方式:

教师在教学中关注的是学生对待学习的态度是否积极,关注的是学生思考。

一元一次不等式教学设计 篇3

教学目标

1、知识与技能

理解一次函数与一元一次不等式的关系,发展学生的认知体系。

2、过程与方法

经历探索一次函数与一元一次不等式的关系的过程,掌握其应用方法。

3、情感、态度与价值观

培养良好的数学抽象思维,体会本节课知识在现实生活中的应用价值。

重、难点与关键

1、重点:一次函数与一元一次不等式的关系。

2、难点:如何应用一次函数性质解决一元一次不等式的解集问题。

3、关键:从一次函数的图象出发,直观地呈现出一元一次不等式的解的范围。

教具准备

采用“问题解决”的教学方法。

教学过程

一、回顾交流,知识迁移

问题提出:请思考下面两个问题:

(1)解不等式5x+6>3x+10;

(2)当自变量x为何值时,函数y=2x-4的`值大于0?

学生活动观察屏幕,通过思考,得到(1)、(2)的答案,回答问题。

教师活动在学生充分探讨的基础上,引导学生思考:“一元一次不等式与一次函数之间有何内在联系?”

思路点拨在问题(1)中,不等式5x+6>3x+10可以转化为2x-4>0,解这个不等式得x>2;问题(2)就是解不等式2x-4>0,得出x>2时函数y=2x-4的值大于0,因此这两个问题实际上是同一个问题,从直线y=2x-4(如图)可以看出。当x>2时,这条直线上的点在x轴的上方,即这时y=2x-4>0。

问题探索

教师叙述:由上面两个问题的关系,能进一步得到“解不等式ax+b>0”与“求自变量x在什么范围内,一次函数y=ax+b的值大于0”有什么关系?

学生活动小组讨论,观察上述问题的图象,联系不等式、函数知识,解决问题。

师生共识由于任何一元一次不等式都可以转化为ax+b>0或ax+b<0(a,b为常数,a≠0)的形式,所以解一元一次不等式可以看出:当一次函数值大(小)于0时,求自变量相应的取值范围。

教学形式师生互动交流,生生互动。

二、范例点击,领悟新知

例2用画函数图象的方法解不等式5x+4<2x+10。

教师活动激发思考

学生活动小组合作讨论,运用两种思维方法解决例2问题

解法1:原不等式化为3x-6<0,画出直线y=3x-6(左图),可以看出,当x<2时,这条直线上的点在x轴的下方,即这时y=3x-6<0,所以不等式的解集为x<2。

解法2:将原不等式的两边分别看作两个一次函数,画出直线y=5x+4与直线y=2x+10(右图),可以看出,它们交点的横坐标为2,当x<2时,对于同一个x,直线y=5x+4上的点在直线y=2x+10上相应点的下方,这时5x+4<2x+10,所以不等式的解集为x<2。

评析两种解法都把解不等式转化为比较直线上点的位置的高低。

三、随堂练习,巩固深化

课本P216练习。

四、课堂,发展潜能

用一次函数图象来解一元一次方程或一元一次不等式未必简单,但是从函数角度看问题,能发现一次函数、一元一次方程与一元一次不等式之间的关系,能直观地看到怎样用图形来表示方程的解与不等式的解,这种用函数观点认识问题的方法,对于继续学习数学是重要的。

五、布置作业,专题突破

课本P129习题14·3第3,4,7,8,10题。

一元一次不等式教学设计 篇4

教学目标

1. 使学生掌握不等式的三条基本性质;

2. 培养学生观察、分析、比较的能力,提高他们灵活地运用所学知识解题的能力.

教学重点和难点

重点:不等式的三条基本性质的运用.

难点:不等式的基本性质3的运用.

课堂教学过程设计

一、从学生原有的认知结构提出问题

1. 什么叫不等式?说出不等式的三条基本性质.

2. 当x取下列数值时,不等式1-5x<16是否成立?

3,-4,-3,4,2.5,0,-1.

3. 用不等式表示下列数量关系:

(1) x的3倍大于x的2倍与5的差;

(3)y的与x的的差小于2;

(2) y的一半与4的和是负数;

(4)5与a的4倍的差不是正数.

4. 按照下列条件写出仍然成立的不等式,并说明根据不等式的哪一条基本性质:

(1)m>n,两边都减去3;

(2)m>n,两边同乘以3;

(3)m>n,两边同乘以-3;

(4)m>n,两边同乘以-3;

(5)m>n,两边同乘以 .

(以上各题中,从第2题开始,用投影仪打在屏幕上.学生在回答上述问题时,如遇到困难,教师应做适当点拨)在学生回答完上述问题的基础上,教师指出:本节课我们将通过学习例题和练习,进一步巩固并熟练掌握不等式的基本性质,尤其是不等式基本性质。

二、讲授新课

例1 在下列各题横线上填入不等号,使不等式成立.并说明是根据哪一条不等式基本性质.

(1)若a–3<9,则a_____12;

(2)若-a<10,则a_____–10;

(3)若a>–1,则a_____–4;

(4)若-a>,则a_____0.

答:(1)a<12,根据不等式基本性质1.

(2)a>-10,根据不等式基本性质3.

(3)a>-4,根据不等式基本性质2.

(4)a<0,根据不等式基本性质3.

(在讲授本课时,应启发学和在添加不等号“>”或“<”时,要和题目中的'已知条件进行对比,观察它是根据不等式的哪条基本性质,是怎样由已知条件变形得到的.同时还应强调在运用不等式基本性质3时,不等号要改变方向=

例2 已知,用a<0,“<”或“>”号填空:

(1)a+2_____2; (2)a-1_____–1; (3)3a_____0; (4)a-1______0; (5)a2 _______0; (6)a3______0; (7)a-1______0; (8)|a|______0。

答:(1)a+2<2,根据不等式基本性质1.

(2)a-1<-1,根据不等式基本性质1.

(3)因为3a,根据不等式基本性质2.

(4)->0,根据不等式基本性质3.

(5)因为a<0,两边同乘以a<0,由不等式基本性质3,得a2>0.

(6)因为a<0,两边同乘以a2>0,由不等式基本性质2,得a3<0。

(7)因为a<0,两边同加上-1,由不等式基本性质1,得a-1<-1.

又已知,-1<0,所以a-1<0.

(8)因为。a<0,所以a≠0,所以|a|>0.

(本例题除了进一步运用不等式的三条基本性质外,还涉及了一些旧的基础知识,如a<0表示a是负数;a>0表示a是正数;|a|是非负数.后面几个小题较灵活,条件由具体数字改为抽象的字母,这里字母代表正数还是代表负数是解决问题的关键)

例外 判断下列各题的推导是否正确?为什么?(投影)(请学生回答)

(1)因为7.5>5.7,所以-7.5<-5.7;

(2)因为a+8>4,,所以a>-4;

(3)因为4a>4b,所以a>b;

(4)因为a<b,所以<>'

(5)因为>-1,所以a>4;

(6)因为-1>-2,所以-a-1>-a-2;

(7)因为3>2,所以3a>2a.

答:

(1)正确,根据不等式基本性质3.

(2)正确,根据不等式基本性质1.

(3)正确,根据不等式基本性质2.

(4)不对,根据不等式基本性质3,应改为>;

(5)因为>-1,所以a>4

答:(1)正确,根据不等式基本性质3。

(2)正确,根据不等式基本性质1。

(3)正确,根据不等式基本性质2。

(4)不对,根据不等式基本性质3,应改为。

(5)不对,根据不等式基本性质5,应改为a<4。

(6)正确,根据不等式基本性质1。

(7)不对,应分情况逐一讨论。

当a>0时,3a>2a。(不等式基本性质2)

当a=0时,3a<2a。

当a<0时,3a<2a。(不等式基本性质3)

(当学生在回答本题的过程当中,当遇到困难或问题时,教师应做适当引导、启发、帮助)

三、课堂练习(投影)

1。按照下列条件,写出仍能成立的不等式:

(1)由-2<-1,两边都加-a; (2)由-4x<0,两边都乘以-;

(3)由7>5,两边都乘以不为零的-a。

2?用“>”或“<”号填空:

(1)当a-b<0时,a______b: (2)当a<0,b<0时,ab_____0;

(3)当a<0,b<0时,ab____0; (4)当a>0,b<0时,ab____0;

(5)若a____0,b<0,则ab>0; (6)若<0,且b<0,则a_____0。

四、师生共同小结

在师生共同回顾本节课所学内容的基础上,教师指出:①在利用不等式的基本性质进行变形时,当不等式的两边都乘以(或除以)同一个字母,字母代表什么数是问题的关键,这决定了是用不等式基本性质2还是基本性质3,也就是不等号是否要改变方向的问题;②运用不等式基本性质3时,要变两个号,一个性质符号,另一个是不等号。

五、作业

1.根据不等式的基本性质,把下列不等式化成“x>a”或“x<a”的形式:

(1)x-1<0;

(2)x>-x+6;

(3)3x>7;

(4)-x<-3。

2.设a<b,用“>”或“>”号连接下列各题中的两个代数式:

(1)a-1,b-1;

(2)a+2,b+2; (3)2a,2b;

(4);

(5); (6)-b,-a。

3.用“>”号或“<”号填空:

(1)若a-b<0,则a_____b;

(2)若b<0,则a+b_____a;

(3)若a=0,则a+b_____b;

(4)若<0,则ab_____;

(5)b<a<2,则(a-2)(b-2)____0;(2-a)(2-b)____;(2-a)(a-b)。

一元一次不等式教学设计 篇5

一、教学目标

1.通过具体问题情境,让学生感受到现实生活中存在着大量的不等关系;

2.通过了解一些不等式(组)产生的实际背景的前提下,学习不等式的相关内容;

3.理解比较两个实数(代数式)大小的数学思维过程.

二、教学重点:

用不等式(组)表示实际问题中的不等关系,并用不等式(组)研究含有不等关系的问题.理解不等式(组)对于刻画不等关系的意义和价值.

三、教学难点:

使用不等式(组)正确表示出不等关系.四、教学过程:

(一)导入课题

现实世界和生活中,既有相等关系,又存在着大量的'不等关系我们知道,两点之间线段最短,三角形两边之和大于第三边,两边之差小于第三边,等等.人们还经常用长与短,高与矮,轻与重,大与小,不超过或不少于等来描述某种客观事物在数量上存在的不等关系.在数学中,我们用不等式来表示这样的不等关系.

提问:

1.“数量”与“数量”之间存在哪几种关系?(大于、等于、小于).2.现实生活中,人们是如何描述“不等关系”的呢?(用不等式描述)引入知识点:

1.不等式的定义:用不等号、≤、≥、≠表示不等关系的式子叫不等式.2.不等式ab的含义.不等式ab应读作“a大于或者等于b”,其含义是指“或者a>b,或者a=b”,等价于“a不小于b,即若a>b或a=b之中有一个正确,则ab正确.3.实数比较大小的依据与方法.

(1)如果ab是正数,那么ab;如果ab等于零,那么ab;如果ab是负数,那么ab.反之也成立,就是(ab>0a>b;ab=0a=b;ab

(二)基础练习

1.用不等式表示下面的不等关系:

(1)a与b的和是非负数;

(2)某公路立交桥对通过车辆的高度h“限高4m”;解:

(1)ab0;

(2)h4.2.有一个两位数大于50而小于60,其个位数字比十位数字大2.试用

不等式表示上述关系(用a和b分别表示这个两位数的十位数字和个位数字).解:由题意知5010ab60,5010ab60,5011a260

ba2,ba2,43a5.11114811a5843.比较(a+3)(a-5)与(a+2)(a-4)的大小.解:(a+3)(a-5)-(a+2)(a-4)=(a22a15)-a22a6=-7

(三)提升训练

1.比较x23与3x的大小,其中xR.

222233333解:x33xx3x3x3x3x

24422220,x233x.方法总结:两个实数比较大小,通常用作差法来进行,其一般步骤是:

第一步:作差;第二步:变形,常采用配方、因式分解等恒等变形手段,将差化积;第三步:定号.最后得出结论.

2.小明带了20元钱去超市买笔记本和钢笔.已知笔记本每本2元,钢笔每枝5元.设他所能买的笔记本和钢笔的数量分别为x,y,则x,2x5y20,y应满足关系式xN,

yN.3.一个盒中红、白、黑三种球分别有x个、y个、z个,黑球个数至少是白球个数的一半,至多是红球的,白球与黑球的个数之和至少为55,使用不等式将题中的不等关系表示出来(x,y,zN),解:32yz55.

(四)课后巩固

p74练习题:1,2.p75习题3.1 A组:1,2. 4