网站导航
老地方 > 百科 > 教学教案 > 正文

小学数学教案

2025/08/11教学教案

老地方整理的小学数学教案(精选5篇),希望这些优秀内容,能够帮助到大家。

小学数学教案 篇1

教学目的:

本游戏活动以摸球作为载体。通过此数学游戏,目的是让学生在活动中经历实验、猜想与验证的过程。

教学过程:

1、师向学生交代清楚活动的操作顺序:两人一组,然后记录颜色,再放回。记录摸出的红球、白球次数可用画“正”字的方法。

2、组织活动:

(师给每组口袋内准备的白球与红球数的比例应相同。)

学生两人一组,一人摸球,一人记录。

活动过程中,教师要及时进行巡视,以纠正学生可能出现的不当操作。

3、汇报交流并猜想:

每组学生操作完毕后,组织全班进行汇报交流。并将汇报结果记录在黑板上,以便学生进行猜想。也要请他们说说猜想的根据。

4、验证猜想:

请学生打开各小组的口袋,验证猜想的结果与实际结果是否相符。

5、小组讨论:

投影出示讨论的题目包括表格。然后出示问题。

注意:学生在具体讨论时,也会出现各种各样的猜想与推选的方法,对此,要让学生说说自己的理由,特别要指导学生应考虑比赛外的各种因素。

6、课堂练习:

89页第3题。

提示学生:由于任选的随机性,故可能出现特例。对此,在解答时,不要求学生作统一的回答。

小学数学教案 篇2

一、创设情境

师:同学们,这是我们天天在学校喝的圣澳特牌桶装纯净水。仔细观察和思考,你能从中知道哪些信息?

生:装纯净水的桶是一个近似圆柱体。

生:从标签中可以知道纯净水的厂址、送水电话。

生:整桶水是18.9升。

师:这桶纯净水已经喝了一部分,谁来猜猜看,还剩下整桶水的几分之几?

生:1/4。

生:1/5,也可能是1/6。

二、归纳建构

师:1/4、1/5和1/6这几个数,你能化成小数和百分数吗?现在请各小组分工完成,然后把自己的转化方法告诉你的同桌。

(生计算,并交流转化方法。)

师:通过计算知道:1/4等于0.25,也等于25%。那么这桶纯净水已经喝了一部分,还剩下整桶水的1/4这句话中的1/4能改成0.25或改成25%吗?请同桌之间相互交流。

师:刚才有的同学说剩下的纯净水是整桶的1/4,也就是25%,也有的同学说剩下的纯净水是整桶的1/5或1/6,你们有办法证明自己猜对了吗?

生A:可以先量出原来整桶水和剩下的水的高度分别是多少,再计算还剩下几分之几。

生B:可以先测出剩下的水的质量或体积,再计算出剩下的占整桶水的几分之几。

师:那现在就请A同学去测量,然后再告诉大家。

(生A 操作后得出:整桶纯净水的高度是35厘米,剩下水的高度是8厘米,剩下的占这桶水的8/35,大约是22%。)

生B:因为桶口部分细一些,所以A同学测出的不是很精确,要想得出更精确的数据应该用我的方法。

师:那就请你更精确地测量一下。

(生B演示,测出剩下的是3.78升。)

生B:还剩下3.7818.9=1/5=20%。

师:你还能知道什么?

生:知道喝了的是整桶水的百分之几。

师:怎样计算?

生:1-20%=80%。

生:也可以用(18.9-3.78)18.9。

师:通过刚才的解答,你认为解答这些问题的关键是什么?(关键是弄清谁与谁比,把谁看作单位1。)

三、回归生活

1、提供材料:

公司最近总共生产了20xx桶纯净水,有4桶不合格,纯净水去年每桶成本5元,现在比原来降低了20%,现以每桶6元的单价销售了生产总量的95%。

师:如果你是公司的生产销售经理,你能知道什么?请你们四人小组进行讨论。

2、分析材料:

师:哪一组愿意把你们组的学习成果汇报一下?

生:我们小组认为可以知道最近生产的合格率是多少。

师:说说你们的想法。

生:是1-42000=1-0.2%=99.8%。

生:我们小组知道了公司现在能节约成本多少元,(5-4)20xx=20xx(元)。

生:我们小组求出公司现在赚了(6 - 4)200095%=3800(元)。

小学数学教案 篇3

一、重视审题能力的培养和良好审题习惯的养成

审题能力是综合获取信息、处理信息的一种能力,它需要以一定的知识储备、认知水平为依托,更需要有良好的读题习惯、有效的思考方法为保证。应用题的审题过程就是要审清题目的情节内容和数量关系,使题目的条件、问题及其关系在学生头脑中建立起完整的印象,为正确分析数量关系和解答应用题创造良好的前提条件。

培养小学生养成认真审题的好习惯,并形成较高的审题能力这并不是一朝一夕就能完成的,必须要有相当长的时间来强化训练,几乎贯穿我们数学教学的始终。在开始的训练阶段,教师必须对学生提出明确的要求。教师可以要求学生一读题目,建立表象;二读题目,明确问题;三读题目,找出关键,并作记号。其难度主要体现在“在关键字词句下划上重点标记”这一要求。教师还可以利用时常出些“陷阱题”“刺激”学生,让学生从思想上认识到审好题目的重要性,这一点还是比较容易做到。

二、帮助学生建立数学模型并提高学生的模式识别能力

数学是充满模式的。现代 认知学习理论的研究成果清楚地表明:专家之所以能很快地通过知觉找出在某一情境下解决问题的策略,是因为他具备迅速地把记忆中原有的知识?经验检索出来的能力。在数学问题的解决过程中,学生如能正确地识别问题的模式,就能很快地收敛思考问题的范围,为正确选择问题解决思路就迈出了关键的一步。

目前小学生解决实际题的能力还是相当薄弱的,主要表现为对问题的情境语言缺乏常识性的了解,不善于利用等量关系去解决问题,即找不准问题中各数量间的关系,这方面就属于模式识别研究范围内的问题。变式训练是一良策,学生可以从题目的变更中了解与应用问题密切相关的术语,而且通过背景的变换,达到强化模式的目的。在采用变式训练的教学的过程中,教师应抓住引导学生实现模式识别关键性的一个环节——其中具有代表性的问题进行详尽的剖析,决不能就题论题,要教方法?教思想,从而达到以不变应万变的目的。

三、引导学生概括、领悟常见的数学思想

小学高年级的学生抽象逻辑思维得到了一定的发展 ,他们有一定归类和上升为数学思想的能力。

数学思想较之数学基础知识,有更高的层次和地位.它蕴涵在数学知识发生、发展和应用的过程中,它是一种数学意识,属于思维的范畴,用以对数学问题的认识、处理和解决.数学方法是数学思想的具体体现,具有模式化与可操作性的特征,可以作为解题的具体手段.只有对数学思想与方法概括了,才能在分析和解决问题时得心应手;只有领悟了数学思想与方法,书本的、别人的知识技巧才会变成自己的能力。像小学数学经常会出现的行程问题,学生如果掌握了数形结合的思想方法,解决的时候就会得心应手。

四、重视解题策略的回顾和反思

小学高年级的学生有一定的归纳、概括、和策略反思的能力。

在数学解题过程中,解决问题以后,再回过头来对自己的解题活动加以回顾与探讨、分析与研究,是非常必要的一个重要环节(“解后不思等于不收”,“反思是收获的黄金季节”)。这是数学解决问题过程的最后阶段,也是对提高学生分析和解决问题能力最有意义的阶段。

解决实际问题的教学目的并不单纯为了求得问题的结果,真正的目的是为了提高学生分析和解决问题的能力(经验只有通过概括才能上层次,概括的层次越高,迁移的半径就越大),培养学生的创造精神,而这一教学目的恰恰主要通过回顾解决问题的教学来实现.所以,在数学教学中要十分重视解题的回顾,与学生一起对解题的结果和解法进行细致的分析,对解题的主要思想、关键因素和同一类型问题的解法进行概括,可以帮助学生从解题中总结 出数学的基本思想和方法加以掌握,并将它们用到新的问题中去,成为以后分析和解决问题的有力武器。

五、适当进行开放题和新型题的训练,拓宽学生的知识面

数学教学中适当地对学生进行开放题和新型题的训练,是提高学生分析和解决实际问题能力的必要补充。可利用学校的图书馆、教室等学生非常熟悉的地方,创设出一个个丰富的现实的问题情境,学生依据这些材料解决问题,求知欲强,并体会到成功的快乐。还可以培养学生应用数学的意识,能知道现实生活中蕴涵着大量的数学信息,能感受到现实世界中有广泛的应用。也可以通过改变条件或问题,把一道题改编成几道不同类型的问题,让学生弄清算理,加以辨析,从而形成知识链,提高举一反三、触类旁通的能力,使学生的思维得到进一步的发展。

小学数学教案 篇4

一、 从生活中感知

1、 欣赏建筑中的对称美

同学们,你知道世界上有哪些著名的建筑物吗?老师这里也收集了一些著名建筑物的照片,咱们来欣赏一下,好吗?(播放照片)

你觉得这些建筑物怎么样?

这些建筑物之所以看起来这样赏心悦目,是因为它们都具有一种对称美。

2、 欣赏生活中其他具有对称性的物体

除了有些建筑具有对称的特点,生活中还有很多物体也是对称的。你能来说一说吗?

是啊,对称的物体的确很多。大家看,边解说:许多动物的外形是对称的。有些艺术品是对称的。飞机的外形也是对称的,如果飞机不对称的话,会怎么样?看来对称不仅能给我们带来美的感受,有时也是必须的。

二、 在操作中研究

1、 在操作中探究轴对称图形的特点

现在把这些对称的物体画下来,可以得到一些平面图形,(出示图形)这些图形有什么特点呢,让我们一起来研究一下。咱们来比比看,哪个小组的同学最会研究!现在就请轻轻打开1号信封取出图形,开始!(学生活动)

交流:研究之后,你们发现了什么?

指名4个学生回答一下,学生回答的时候教师指导他举起图形展示,同时将他研究的图形贴到黑板上。

把没有讨论的图形贴上黑板,

那其余的图形是不是也具有这样的特点呢?

是啊,我们发现这些图形都能对折,(板书:对折)(课件演示)

对折后折痕两边的部分大小一样、形状一样,(课件演示)能够完全重合。(板书;完全重合)

中间的折痕呢,就像一条轴,这种对折后两边能完全重合的图形就是轴对称图形。(完成板书)

2、试一试

下面我们来看一看2号信封里的这些图形(出示信封)哪些是轴对称图形?

请一个小组的同学一起讨论一下。

学生讨论,教师收掉黑板上的六个图形。

交流:

在我们研究的这六个图形中,哪些是轴对称图形呢?你是怎么发现的,你能很快地向大家展示一下你的方法吗?

(三角形:这种三角形是轴对称图形。梯形:这种梯形是轴对称图形。

五边形:这种五边形是轴对称图形。

长方形:还有谁和他折得不一样?

长方形除了竖着折两边能完全重合,横着折也可以。(教师演示)

正方形:正方形也有几种折法可以使两边完全重合

那有没有不是轴对称图形的呢?你怎么会认为它不是呢?

4、制作一个轴对称图形

同学们,我们已经认识了什么是轴对称图形,那你想不想自己动手来制作一个呢?在动手之前,我们先来开个小小讨论会,每个小组讨论这三个问题:

(1) 做什么图形?

(2) 选什么工具?

(3) 怎么分工?

好,开始!

学生讨论。

你们讨论出一个方案了吗?

那就请大家各显神通吧,我们来比一比哪个小组的作品最有创意。

教师巡视,要是他们时间够的话可以请他们多做一个。要是发现做两个的,请他们展示做的好的那个。

交流:你们做的是什么图形?是怎么做的?

三、 识别轴对称图形

1、 今天我们认识了什么图形?在我们的生活中到处都可以找到它。

现在就请同学们在纸上的这些图形中找出哪些是轴对称图形。

谁上台来说说你找到了哪些是轴对称图形?

紫荆花:它为什么不是呢?教师拿教鞭在屏幕上 一指,因为它里面的图案对折后两边不能完全重合。

C:为什么是呢?/谁有不同意见。这就说明并不一定要左右对称才行,换个方向对折也可以,一次折不出,就多试几次。

2、 画一画。

请同学们看第二张纸,

图上都只画出了每个图形的一半,你能画出它们的另一半,使它成为一个轴对称图形吗?

我们先来画第一个。

请你说说你是怎么画的?还有其他画法吗?

第二种画法更容易。

先观察给出的一半图形,确定另一半图形的各个顶点,再连点成线比较容易。

再来画一下第二个。

请一个学生来展示一下。

你和他一样吗?

四、 全课小结

好,现在我们来轻松一下,请同学们看这,教师表演剪纸。谁来说说我刚刚剪纸时运用了什么知识?课后请同学们到生活中去寻找一下,看看哪些地方也用到了轴对称图形的知识。

你还能想到轴对称图形在生活中的作用吗?

机动:连一连

你是怎么判断的?

小学数学教案 篇5