网站导航
老地方 > 百科 > 教学教案 > 正文

《数与形》教学设计

2025/08/18教学教案

老地方整理的《数与形》教学设计(精选4篇),希望这些优秀内容,能够帮助到大家。

《数与形》教学设计 篇1

教学目标:

知识与技能

1、通过观察、实验,使学生认识图形和相应的数字之间的联系。

2、启发学生结合图形的变化规律发现相应的数字之间的联系。

3、引导学生探索规律,发现规律,运用规律提高计算技能。

过程与方法

经历解决问题的相关过程,体验迁移类推的学习方法。

情感态度与价值观

感受数学在解决实际问题的作用,培养学生热爱数学、乐学数学的情感,体验数学知识的应用价值。

重点:

引导学生理解图形和数字的对应关系,并结合图形的变化规律,发现相应的数字变化规律。

难点:

探索规律并验证规律。

教学准备:

课件,小正方形若干。

教学过程:

一、质疑导入

出示算式:1+3+5+7+9+11+······+=(?)你能快速口报出结果吗?观察这道算式,这些加数都有什么特点?

二、探究新知

1、化繁为简初步探究(1)1+3=()1+3+5=()1+3+5+7=()算出结果。观察算式与结果,你有什么发现?

(1、它们都是从1开始的连续奇数数列求和。

2、它们的和是一个数的平方。)

(2)像这样的算式会有什么奥妙呢?今天我们就借助小小的正方形来研究像这样的数列求和的奥妙(板书课题:数与形)

教师演示1可以表示1个正方形,1+3可以用1个正方形和3个正方形拼成一个稍大的'正方形,是几行几列呢?(2)数形结合在拼好的稍大正方形、较大正方形上涂一涂,分别找出加数1、3、5在图形上怎么表示?一个数涂一种颜色。

(3)观察算式与图形,你发现了什么规律?同桌交流学生汇报。

(规律:1、这样的数列求和:有几个加数就是几的平方。

2、每多一个加数,图形上会增加一个“L”形。

3、和是一个数的平方,这个数是组成正方形行与列小正方形的个数。(正方形边长))(4)利用规律完成练习1+3+5+7+9=1+3+5+7+9+11+13=()=9的平方11+9+7+5+3+1=3、深化规律,探究求和通式(1)引导;

1+3=2的平方,结果中2的平方,这里的2与哪个加数更为紧密?(3+1)÷2=2(2)学生推出1+3+5=3的平方(5+1)÷2=34、独立验证求和通式1+3+5+7+9=1+3+5+7+9+11+13=三、深化练习1+3+5+7+9+11+······+=(?)

《数与形》教学设计 篇2

教学目标:

使学生通过自主探究发现图形中隐藏着的数的规律,并会应用所发现的规律。

使学生在解决数学问题的过程中,感受数形结合思想的魅力。

学习目标:

探索利用图形直观解决计算的优越

感受用算式表达图形规律的优越

一、激情导课

师:这个周末老师又学了一招,想知道吗?我能很快的算出从1开始的连续奇数相加的结果,如1+31+3+5+7等等,信不信,现在就由你来出题,我来算,看看快不快?为了证明答案是否正确,带计算机的同学可以拿出来验证结果。

活动开始:老师板书的同时说出答案。

怎么样?是不是特快?想知道我是怎么算出来的吗?我直接告诉你答案,还是你们自己研究?现在我可以给你告诉一个小小的提示,我是通过图形来发现规律的。

板书:形同时说这节课我们就来学习“数与形”,完成板书

二、民主导学

任务一:通过数形结合,探索从1开始的连续奇数之和与“正方形数”的关系

任务呈现:

(我是通过观察图形和算式之间的关系发现的,你来试一试。)

观察,上面的图形和下面的.算式有什么关系,把算式补充完整。图形和算式对照,说说你的发现。

展示交流:

(那个小组最先给我们说说你们的发现呢?先说第二道)

展示时,老师要具体问问算式左边的加数和右边的平方数是怎么来的?(1在哪?3在哪呢?平方数代表图中的什么呢?)

预设发现:

我发现,算式左边的加数是大正方形右上角的小正方形和其他“L”形图形所包含的小正方形个数之和正好是每行或每列小正方形个数的平方。

我发现,从1开始的连续奇数的和正好是这串数个数的平方。

想一想,1+3+5+7又会是什么样子呢?

现在你是不是也能向老师一样算的快了呢?试一试

任务二:利用规律填一填

1+3+5+7=

1+3+5+7+9+11+13=

()=9的平方

1+3+5+7+5+3+1=

展示交流:

说说你是怎么算的?

小结:这么巧妙,简单的办法我们是怎么发现的呢?(借助图形)。看来借助图形能巧妙的帮助我们解决计算问题。那么图形的问题会不会蕴藏着数的规律呢?

板书数-----------形

任务三:发现图形中的数字规律

任务呈现:课本练习二十三的第二题

自主学习:

先自己思考,再与同桌交流你的想法。

展示交流:

预设:

小组展示:我们组发现了后一个图片总比前一个图片多一行,

第二个图比第一个图多2个,第三个图比第二个图多3个,以此类推。

第一个图有一行就是1,第二个图有两行,就是1和2,有几行,就从1开始排到几,如第五个图,有5行,分别是1、2、3、4、5。可以用1+2+3+4+5=15来计算。

第10个数就是从1连续加到10的和,所以算式就是1+2+3+4+5+6+7+8+9+10=55

小结:像刚才这些数量为1、3、6、10、15、55的圆片可以组成三角形,所以,这些数也叫做“三角形数”,回过头来看看刚才的例一的那些数,你想到了什么?(1、4、9、16、100等等正方形数)

数和形真是一对好朋友,数形结合能帮助我们解决好多数学问题,其实在以前的学习中,我们就有由体会。

课件呈现

怪不得,我们的数学家华老这样说,数形结合百般好,隔离分家万事休。

三、检测导结

课本108页的做一做

《数与形》教学设计 篇3

教学内容:

人教版六年级上册P107例1,P108做一做,练习二十二第2题。

教学目标:

1、通过观察、操作、归纳等活动,学生借助“形”来直观感受与“数”之间的关系,体会有时“形”与“数”能互相解释,并能借助“形”解决一些与“数”有关的问题。

2、学生通过数与形结合来分析思考问题,从而感悟数形结合的思想,提高解决问题的能力。

教学重点:

借助“形”感受与“数”之间的关系,培养向上用“数形结合”的思想解决问题。

教学难点:

找到合适的形来表示数和在形中找出数的规律。

教学过程:

一、复习导入:

师:我们已经学过奇数,你还记得哪些数是奇数吗?(PPT出示)

师:相邻的两个奇数之间有什么关系?

今天我们继续研究奇数。(出示加法算式口算得数:1+3,1+3+5)

师:同学们算得真快。(出示:1+3+5+7+9+11+13=)你还能马上报出得数吗?

二、探究新知:

教学例一

师:这条算式中是不是存在一些规律,可以帮助我们快速的计算呢?

复杂的问题都是从简单开始的。我们先来观察一下前面的两条算式。

(一)画图形

1、提示用1个小正方形表示1,那+3就是再加三个一样的小正方形。

出示图片

有几个小正方形?你是怎么知道的?

2、再+5呢?可以怎么摆?

出示图片

(二)形与数对应

为了便于观察,老师给他们都涂上了颜色,是不是更清楚呢?

我们把刚才表示小正方形数的2种算式综合起来,可以用什么号连接?

板书:

1=1的平方

1+3=2的平方

1+3+5=3的平方

小结:这里的正方形直观的解释了数的两种运算,同学们想一想,按照这样的`规律,图四会是什么样子,与它配套的算式又是什么样子?同桌合作,画出草图,写出算式。

(三)找规律

观察这些数和形,你有什么发现?

生1:大正方形右上角的小正方形和其他“L”形所包含的小正方,形数之和正好是每行每列小正方形数的平方

生2:加法算式中的加数都是奇数,(都是从1开始的)

生3:有几个数相加,和就是几的平方

想一想,第10个图中有几个小正方形?第100个图呢?这个规律可以用到所有类似数的计算吗?

只有从1开始的,连续奇数相加时,我们可以转化为求正方形的个数。

(四)总结

刚才的学习中,我们利用数的计算求出了小正方形的个数,反过来正方形也帮助我们理解了计算中各数的含义。

(五)没有图你会计算这几题吗?

(1)1+3+5+7=

(2)1+3+5+7+9+11=

(3)=9的平方

回忆一下,刚才我们是如何学习正方形和它算式之间的联系的?

1、写算式

2、增加图

3、找规律

4、拓展

掌握这个方法,我们可以解决很多问题。

三、练习拓展

P108“做一做”第2题

1、出示问题,生独立观察。

2、小组讨论、发现规律。

3、全班汇报、交流。(PPT展示)

二十二第2题(三角形数)

1、小组合作探究

运用刚才的方法,完成书中P1092题

2、生汇报

(1)写算式

(2)增加图

(3)找规律

形的特点:第几幅图就有几行,最下方就有几个

数的特点:都是从1开始,相邻两数相差1

和的特点:(首行+末行)×行数÷2

(4)拓展第十个图

3、讲解三角形数

由于数量为1,3,6,10……的原片可以组成三角形,数学上,这些数也叫做“三角形数”。那么我们之前学过的1,4,9,16……,这样组成正方形的数,它叫什么呢?正方形数。

其实每个正方形数可以拆成两个不同的三角形数,比如5的平方=10+15。

4、回顾以前涉及的一些数形结合的例子。

四、全课总结

通过这节课的学习,你有什么收获?

通过探索简单的数与形的关系,我们发现了数与形的密切联系。欣赏华罗庚的一首诗:

数与形,本是相倚依,焉能分作两边飞。

数无形时少直觉,形无数时难入微。

数形结合百般好,隔离分家万事休。

切莫忘,几何代数统一体,永远联系,切莫分离。”

五、练习

教材第109页第1题。

《数与形》教学设计 篇4

设计说明

数与形之间密不可分,它们相互转化,相辅相成。在课堂教学中适当地应用数形结合思想,把握好数形结合的度,就可以把问题化难为易,化繁为简。在引进新知、建构概念、解决问题时,还可以激发学生的学习兴趣,有利于发展学生的想象力,提高学生的思维能力。

1、重视数与形之间的联系,找到解题规律。

数形结合思想是小学阶段最重要的一种数学思想,在课堂教学中,重视数与形之间的联系,有助于学生抽象能力的提升。因此,教学伊始,从观察、分析例1中图与算式的关系入手,引导学生探究算式左边的加数和与大正方形中每列(或每行)小正方形个数的关系,发现数与形之间的联系,找到其中的规律,使学生在体验用形表示数的直观性的同时,学会应用规律解决问题。

2、借助数与形之间的关系解决相关问题。

教学例2时,从观察抽象的算式特点开始,先通过简单的计算找到规律,再借助多种几何图形直观验证计算过程及结果,使学生在初步了解、运用数形结合思想方法的同时,体验到数学的极限思想。

课前准备

教师准备 PPT课件 学情检测卡

学生准备 若干张完全相同的小正方形纸卡

教学过程

问题导入

1、课件出示问题。

小兰和爸爸、妈妈一起步行到离家800 m远的公园健身中心,用了20分钟。妈妈到了健身中心后直接返回家里,还是用了20分钟。小兰和爸爸一起在健身中心锻炼了10分钟。然后,小兰跑步回到家中,用了5分钟,而爸爸走回家中,用了15分钟。上面几幅图哪幅是描述妈妈离家时间和离家距离的关系?哪幅是描述爸爸的?哪幅是描述小兰的?

2、学生讨论、回答。

(图2是描述妈妈的,因为妈妈在健身中心没停留;图1是描述小兰的,因为她在回家的路上用了5分钟;图3是描述爸爸的)

3、揭示课题。

借助图形不但能帮助我们直观了解小兰离家时间与离家距离的关系,还可以帮助我们解决复杂的代数问题,这节课我们就来研究数与形。

设计意图:通过解决与图形有关的数学问题,使学生关注图形与数学的关系,在调动学生学习的积极性的同时,为新知的.学习作铺垫。

探究新知

1、教学例1。

(1)课件出示例题。

观察图形,把算式补充完整。

1=()2 1+3=()2 1+3+5=()2

(2)观察图形与算式,总结规律。

①观察、讨论。

仔细观察,看一看上面的图形和算式左边的加数有什么关系。

②汇报规律。

[规律一:算式左边加数的个数与对应的大正方形中每列(或每行)小正方形的个数相同。

规律二:算式左边加数的和是大正方形左下角的小正方形和其他“┐”形所包含的小正方形的个数和。

规律三:算式左边加数的和正好等于大正方形中每列(或每行)小正方形个数的平方。]

(3)运用规律解决问题。(可借助学具摆一摆)

①1+3+5+7=()2 (1+3+5+7=42)

②1+3+5+7+9+11+13=()2

(1+3+5+7+9+11+13=72)

③________________=92

(1+3+5+7+9+11+13+15+17=92)

2、教学例2。

(1)课件出示例题。

计算++++++…。

(2)观察、试算、发现规律。

①观察算式中加数的特点,你有什么发现?

②分步算一算,你有什么发现?

试算:+=,+=,+=…

(发现继续加下去,等号右边的分数越来越接近1)

(3)数形结合,验证规律。

①引导验证:你发现的规律成立吗?请结合图示进行验证。

②汇报、交流。

a、结合圆的面积验证:用一个圆的面积表示单位“1”,则原算式可表示为:

b、结合线段图验证:用一条线段表示单位“1”,则原算式可表示为:

(4)明确结论。

++++++…=1

(5)交流对用数形结合的方法解决问题的感悟。

(数形结合的方法可以把抽象的代数问题形象化,使其直观、简洁、易懂)

设计意图:教学时,观察、讨论相结合,引导学生借助不同的几何图形解决例题中的代数问题,使学生在理解、掌握例题中数与形关系的基础上,充分体会用数形结合方法解决问题的直观性,感悟数学的极限思想。

巩固练习

1、完成教材108页1题。(让学生独立读题、分析、解答,鼓励用不同的方法解答)

2、完成教材108页2题。

3、完成教材110页4题。

课堂总结

通过本节课的学习,你学会了哪些解决问题的方法?

布置作业

1、教材109页1题。

2、教材110页3题。

3、教材111页6题。

板书设计

数学广角——数与形

数形结合 形象直观