《环形面积》教学设计
老地方整理的《环形面积》教学设计(精选4篇),希望这些优秀内容,能够帮助到大家。
《环形面积》教学设计 篇1
《环形面积》教学设计(通用10篇)
作为一名教学工作者,常常需要准备教学设计,教学设计一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。教学设计应该怎么写才好呢?以下是小编整理的《环形面积》教学设计,仅供参考,欢迎大家阅读。
《环形面积》教学设计 篇2
【学情与教材分析】
梯形面积的计算是多边形面积计算中的一部分,它是在学生已经认识了梯形的特征,并且学会平行四边形、三角形的面积计算的基础上进行教学的。学生在学习的平行四边形、三角形的面积的过程中已经历了公式的推导过程,充分体验转化这一数学思想在学习的应用。梯形的面积计算的推导方法是对前面所学的几种图形面积计算公式推导方法的拓展和延伸。教材直接给出一个梯形,引导学生用转化的方法思考,进行实际操作,依照求之前的经验把梯形转化为已学过的图形来计算它的面积。在操作的基础上,引导学生自己总结公式,并应用梯形面积的计算公式解决实际问题。通过本课时的学习,能加深学生对图形特征以及各种图形之间的内在联系的认识,领会转化的数学思想,为今后学好几何图形打下坚实的基础。
【教学目标】
1.使学生理解并掌握梯形面积公式,能正确应用公式进行计算。
2.通过动手操作,使学生经历公式的推导过程,培养学生的迁移类推能力和抽象概括能力,将转化策略的教学融入到学生的“拼、剪、画、说“活动中,使学生领悟转化思想,感受事物之间是密切联系的,使学生能应用所学知识解决实际问题,发展学生的空间观念。
3.引导学生运用转化的思想探索知识的变化规律,培养学生分析问题和解决问题的能力,通过演示和操作,让学生在拼剪中感受数学知识的内在美,培养团队合作意识,在解决问题的过程中,感受数学和现实生活的密切联系,体会学数学、用数学的乐趣。
【教学重点、难点】
1.理解并掌握梯形的面积计算公式。
2.运用梯形面积计算公式解决问题。
教学关键:
怎样把梯形转化为学过的图形来推导出梯形的面积公式,找到转化后图形与原来梯形之间的关系。
教具:
课件、梯形卡纸。
学具:
剪刀、各种不同形状的梯形卡纸。
教学过程:
一、课前复习
同学们,之前我们学习了平行四边形和三角形的'面积的计算方法,回忆一下,平行四边形的面积公式是怎样推导出来的?三角形的呢?(这样是为学习梯形的面积计算做好了铺垫。因为三角形面积公式及其推导过程与梯形有许多相似之处,有了前几节课的基础,学生推导出梯形面积公式就并不困难。)
请同学们看这幅图片,汽车玻璃是什么形状的?你会计算这块玻璃形的面积吗?今天我们就来学习梯形的面积,相信学习完这节课你就能解决这个问题了。板书课题:梯形的面积
(在实际情景中,认识计算梯形面积的必要性。这样导入,使学生感受到数学与实际生活的密切联系,恰到好处地激发学生求知的欲望,使学生产生一种探求知识的动力。)
二、探索转化:
1、引导学生提出解决问题方向:
我们在学习的平行四边形和三角形面积时,采用了割补的方法、拼摆的方法,把要研究的新图形转化为已经会计算面积的图形,再利用已学过的图形推导出新图形的面积计算方法。现在我们又要计算梯形面积,怎么办呢?(转化)你准备用什么方法把梯形转化为我们学过的图形?(运用迁移规律,注意从旧到新、引导学生在整理旧知的基础上学习新知,体现“温故知新”的教学思想。)
2、动手转化:
(老师为每组同学都准备好一些梯形,其中有一组是两个完全相同的梯形)
小组活动:
(1)梯形可以合理转化为什么图形?怎样转化?
(2)转化后的图形与梯形有什么联系?
小组合作交流,老师巡视指导。学生可能出现的情况:
(新课程标准的基本理念就是要让学生“人人学有价值的数学”,强调“教学要从学生已有的经验出发,让学生亲身经历知识的学习过程”。所以,在教学中,我留给学生充分的时间,小组合作,鼓励做法多样。)
3、公式推导:
根据转化方法来推导梯形的面积公式。归纳总结梯形的面积计算方法。梯形面积=(上底+下底)x高÷2
(在操作探究的基础上,我引导学生自己来总结梯形面积的计算公式,通过这样的设计,体现了让“学生自主探究、自主学习”的教学理念,满足了“学生希望自己是一个发现者、研究者、探索者”的需要,进一步的促进了学生的学习兴趣。让学生把他想到的推导方法展示出来,既达到突出“重点”,又化解“难点”的目的。)
4、用字母表示梯形面积公式
三、应用公式解决问题
我们已推导出了梯形的面积公式,那么我们就用梯形的面积公式解决一些实际问题吧!课件出示例3主题图
同学们知道这是哪儿吗?(三峡水电站)三峡水电站是我国最大的水电站,同学们请看图,你能求出这个梯形的面积吗?学生试做,二生板书。
(通过动手操作,自主探究,学生获得梯形面积的计算公式后,出示了课本的例题,求梯形大坝的横截面面积。通过实际问题的解决,将学生探究发现的数学知识转化为自身的能力,“学以致用”,来解决生活的实际问题。)
四、巩固练习
1、选择(进一步明白求梯形面积公式的条件)。
2、是非判断题。(判断出对错并且说出原因,提高学生对新课的理解。)
3、我最聪明。(拓展提高)
五、反思总结,拓展延伸
1、学生谈收获,谈学习方法。
2、组内互评:这节课你最想表扬谁,为什么?
3、完成课内作业。
现在请同学们再来看这幅汽车图片,现在你能计算这汽车的玻璃面积了吗?课件出示玻璃的数据,学生作业。
(解决了前面导课提出的的问题,回应引入,使学生更加深刻地感受到数学与实际生活的密切联系。)
【教学反思】
新的数学课程标准指出:教师不只做教材忠实的实施者,而应该做教材的开发者和建设者,教材的教育价值和智力价值能否得到充分发挥,关键在与教师对教材的把握。《梯形的面积》一课,是在学生掌握了平行四边形和三角形面积计算的基础上进行教学的。学生已掌握了一定的学习方法,形成了一定的推理能力。为了充分利用原有的知识,“猜想”、探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他们成为知识的发现者、创造者,培养学生自我探究和实践能力。
一、动手操作,培养探索能力
在推导梯形面积计算公式时,安排学生合作学习,放手让学生自己利用前面的学习经验,动手把梯形转化成已经学过的图形,并让学生通过找图形之间的联系,自主从不同的途径探索出梯形的面积计算方法。首先让学生猜想可以把梯形转化成已经学过的什么图形?再通过“拼、剪、割”的动手操作活动,看一看能转化成什么图形,然后学生思考讨论:想想转化的图形与原梯形有什么关系?通过学生自主探索实践活动,学生亲自参与了面积公式的推导过程,真正做到“知其然,必知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。让学生主动操作、讨论,在充分感知、理解的基础上总结出梯形面积的计算方法,达成了教学目的。
二、发散验证培养解决问题的能力
在学生验证自己的想法是否正确时,鼓励学生大胆地表达自己的想法,以说促思,开启学生思维的“闸门”,引导学生说一说,议一议,互相交流,达成共识。在此基础上让学生归纳出梯形面积的计算方法。通过“拼、剪、说”的活动过程,让学生在活动中发散,在活动中发展,学得主动、扎实,更重要的是培养了学生求异思维、创造能力和解决实际问题的能力。在本课教学中,老师应比较注重培养学生的推理、操作
《环形面积》教学设计 篇3
教学目标:
1、知识目标:通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。
2、能力目标:培养学生的分析、观察和概括能力,发展学生的空间观念。
3、德育目标:激发学生参与整个课堂教学活动的学习兴趣,渗透转化的数学思想和极限思想。
教学重难点:
圆面积公式的推导。
教学关键:
弄清圆与转化后的近似图形之间的关系。
教具:
多媒体计算机。
学具:
每小组(4人一组)8等份、16等份和32等份的(硬纸)圆形、剪刀、刻度尺、一张圆形纸片。
教学过程:
一、复习旧知、设疑导入
同学们,有一首歌中唱到:结识新朋友,不忘老朋友。新知识就好比我们的新朋友,旧知识就象我们的老朋友,在我们学习新知识之前,先去看看我们的老朋友吧!
微机显示一个圆,再把圆涂成红色。提问:这是什么图形?如果圆的半径用r表示,周长怎么表示?(2πr)周长的一半怎么表示?(πr)圆所占平面的大小叫什么?(圆的面积)出示课题。怎样计算圆的面积呢?引入课题。
二、动手操作、探索新知
1、通过度量,猜想圆面积的大小。
用边长等于半径的小正方形,直接度量圆面积(如图),观察后得出圆面积比4个小正方形面积(4r2)小,好象又比面积(3r2)大一些。
初步猜想:圆的面积相当于r2的3倍多一些。
3个小正方形由此看出,要求圆的精确面积通过度量是无法得出的。
2、启发学生回想平行四边形、三角形、梯形面积计算公式的推导过程,微机演示。问:你有什么启示吗?(先转化成学过的图形,如长方形、三角形、梯形,再推导)我们在学习推导几何图形的面积公式时,总是把新的图形经过分割、拼合等办法,将它们转化成我们熟悉的图形,今天我们能不能也用这样的方法推导出圆面积的计算公式呢?
3、学生小组合作。
(1)学生分别把8等份、16等份和32等份的圆形剪开,拼成两个近似的长方形。(微机显示)提问:
①拼成的`图形是长方形吗?(是近似的长方形,因为它的上下两条边不是线段。)
②圆和近似的长方形有什么关系?(形状变了,但面积相等)
③拼成的这三个图形有什么区别?(32等份拼成的图形更接近于长方形)如果把一个圆等分成64份、128份……拼成的长方形会怎样呢?(会更接近长方形)也就是说:圆等分的份数越多,拼成的图形越接近于长方形。
④近似长方形的长相当于圆的哪一部分?怎样用字母表示?(圆周长的一半,C/2=πr),它的宽是圆的哪一部分?(半径r)
⑤你能推导出圆面积计算公式吗?
(2)把圆16等份分割后可拼插成近似的等腰三角形。三角形的底相当于圆周长的多少?(1/4),高相当于圆半径的多少(4r),所以S=1/2·2πr/4r=πr2(见图二)。
(3)把圆16等份分割后,可拼成近似的等腰梯形。梯形上底与下底的和就是圆周长的多少?(πr),高等于圆半径的多少?(2r),所以S=1/2·πr·2r=πr2(见图三)。
4、小结:无论我们把圆拼成什么样的近似图形,都能推导出圆的面积公式S=πr2,验证了原来猜想的正确。说明在求圆的面积时,都要知道半径。
三、看书质疑、自学例3,注意书写格式和运算顺序
四、运用新知,解决问题
1、一个圆的半径是5厘米,它的面积是多少平方厘米?
2、看图计算圆的面积。
3、街心花坛中花坛的周长是18、84米,花坛的面积是多少平方米?
4、要求一张圆形纸片的面积,需测量哪些有关数据?比比看谁先做完,谁想的办法多?
(1)可测圆的半径,根据S=πr2求出面积。
(2)可测圆的直径,根据S=π(d/2)2求出面积。
(3)可测圆的周长,根据S=π·(c/2π)2求出面积。
五、全课小结
这节课你自己运用了什么方法,学到了哪些知识?
六、布置作业
七、板书设计
圆的面积
长方形的面积=长×宽圆的面积=周长的一半×半径
S=πr×r;S=πr2
《环形面积》教学设计 篇4
教学目标:
1.通过教学使学生认识环形,学会环形的制作方法,掌握环形面积的计算方法。
2.培养学生的动手操作能力,观察能力和想像能力,建立初步的空间观念。
3.培养学生的应用意识和解决简单实际问题的能力。
4.使学生初步认识数学与人类生活的密切联系,体验数学活动充满探索和创造。
教学重点:
环形面积的计算方法。
教学难点:
理解环形的形成过程,形成环形的空间观念。
教学方法:
自辅尝试教学法
教具准备:
多媒体课件,小黑板,半径为6厘米和2厘米的两套圆纸片,剪刀、直尺、圆规、光盘。
学具准备:
学生每人准备半径为6厘米和10厘米的圆纸片,剪刀、直尺、圆规。
教学过程:
一、实践操作,引入新知
1. 欣赏图片:美妙的圆
2.思考:圆的面积怎样计算?请同学们拿出半径10厘米的.圆片,谁能告诉大家,你会计算这个圆的面积吗?(引导学生说出文字公式、字母公式、列出算式。)
3.画一画。你能在这个圆内画一个小圆吗?试试看?(学生画圆形,教师巡视指导,帮助有困难的学生。)
4.算一算。你能算出小圆形的面积吗?说一说。
5.猜一猜,剪一剪。如果用剪刀剪去小圆,可能会得到什么图形?象图几呢?把剪出的图形举高,让大家欣赏一下。揭题板书:环形
思考:图1和图3为什么不是环形?(环形有两个同心圆)并粘贴图片。
强调:从一个大圆里去掉一个小同心圆就得到了环形。
二、合作学习,探索新知
1.说一说。在日常生活中,哪些物体上有环形?学生举例,课件演示。
2.数一数:环形有什么几个圆?环的宽度叫什么?
认识环形的特点:有两个同心圆,环宽相同。
3.环形的组成:小圆、大圆、小圆半径、大圆半径。
(课件演示)
4.环形的面积。由圆的面积引出环形的面积。让学生说一说,摸一摸手中环形的面积。讨论:怎样才能算出手中这个环形的面积呢?4人一组讨论。(小黑板出示)
5.探究:环形面积的计算方法。先板演,再探究谁的计算方法最简便。
师:演示从一个大圆面积里去掉小同心圆的面积就是环形的面积。先求出外圆和内圆的面积,再求出环形的面积。还可以怎样计算?引导学生推导出环形面积的简便算法,并用字母公式表示。
思考:要计算环形的面积需要什么条件?
6.实践。判断。
(1)在圆内剪去一个小圆就得到一个圆环。( )
(2)一个环形,外圆半径是4厘米,内圆半径是2厘米,计算这个环形的面积列式为: 3.14×4 -3.14×2 ( )
7.一个铁环。它的内圆半径是10厘米,外圆半径是20厘米。它的面积是多少?
三、应用新知,解决问题
1、你能算出阴影部分的面积吗?
(半个环形:R=10厘米,r= 6厘米)
2、一个圆形环岛的直径是50米,中间是一个直径为10米的圆形花坛,其它是草坪。草坪的占地面积是多少?
3.在一个直径是4米的圆形花坛周围,修一条宽1米的小路。小路的面积是多少平方米?
4.动手操作:5人一组,团结协作,制作五环。
四、反思体验,总结提高
通过这节课的学习,你有哪些收获? 说一说。
五、作业布置
练习十六 第4题。
板书设计:
环 形 的 面 积
大圆面积 — 小同心圆面积 = 环形面积