四年级下册《三角形三边关系》教学设计
老地方整理的四年级下册《三角形三边关系》教学设计(精选4篇),希望这些优秀内容,能够帮助到大家。
四年级下册《三角形三边关系》教学设计 篇1
教学内容
人教版义务教育课程实验教科书数学四年级下册P82页。
教学目标
1.让学生通过动手实践、自主探索、合作交流发现三角形任意两边之和大于第三边。
2.能判断给定长度的三条线段是否围成三角形,能运用三角形任意两边之和大于第三边这一知识解决生活中的简单的实际问题,感受到生活中处处有数学。
3.通过学习发展学生的空间观念,使学生体验成功的喜悦,激发学生学习数学的兴趣。
教具、学具准备
多媒体课件,不同长度不同颜色的小棒若干根,实验表格 。
教学过程
一、创设情境,导入新课
师:出示课件)同学们看,图上这些地方你们都熟悉吗?
(我们的学校、鼓楼商场还有学校后门的建设银行。)
师:如果把我们学校大门到建行看成一条直路的话,把这三个地方连接起来,就成什么图形?
师:老师从学校大门口到建行去取钱,有几条路可走?猜一猜我会走哪条路呢?为什么?
师:老师在银行取了钱后,现在要去鼓楼商场购物,又有几条路可走?我会走哪条路?
师:老师现在要回学校,我又有几条路可走?我又会选择哪条路呢?
师:同学们你们为什么认为在三角形的线路中走其中一条边的线路比走另外两条边组成的线路近呢?把你的想法在小组里交流一下。
师:大多数的同学都是从生活经验中发现走两条边的线路比走另一条边的线路远。那么,有没有别的办法证明我们的这种判断是正确的呢?
(学生困惑,沉默不语.)
师:今天我们就用数学的方法来研究一下,看看在三角形中,三边的关系是怎样的?
(板书课题:三角形的三边关系)
二、设疑激趣,动手探究
师:(设疑)用小棒代替线段。请看,老师这儿有红、蓝、黄色的小棒若干根,任意拿三种颜色的小棒能围成一个三色的三角形吗?(学生会出现能围成和不能围成两种情况。)
师:有两种意见,到底谁的猜测是正确的'呢?让我们动手操作后再谈自己的发现。
师:我请一位同学上来任意拿出不同颜色的三根小棒,看看能不能围成三角形?
(学生上台演示,其他同学看。)
师:这位同学围成三角形了吗?(根据学生的情况将数据填在表格中)你们想不想试试?
师:请拿出老师为你们准备的小棒,要求用三种颜色的小棒围三角形。看看哪些长度的小棒能围成三角形,哪些长度的小棒不能围成三角形。
同桌分工合作,一个同学围三角形,然后读出小棒上标出的长度;另一个同学作记录。
(单位:厘米)
能围成三角形的三根小棒(红、蓝、黄)的长度分别是:
四年级下册《三角形三边关系》教学设计 篇2
一、教学目标
1、探究三角形三边的关系,理解三角形任意两边的和大于第三边;
2、能根据三角形三边的关系解释生活中的现象,提高解决实际问题的能力;
3、积极参与探究活动,获得成功体验,产生学习数学的兴趣。
二、教学重难点
重点:探索三角形三边之间的关系
难点:三角形任意两边的和大于第三边
三、教学过程
Ⅰ、创设情境,引入新课
师:同学们,昨天我们已经认识了三角形,谁能来告诉大家什么是三角形么?
生:由三条线段围成的图形叫做三角形。
师:讲得很好,也就是说三角形是由三条线段所围成的。那么是不是只要有三条线段,我们就一定能围成三角形呢?
生:是(有些答不是)。
师:现在同学们从老师发的5根小棒中选出3根,看看是否能围成三角形?好,开始。(板书:不能围成三角形能围成三角形)
生:摆一摆(上台展示)
师:任取三根小棒,有时能围成三角形,有时却围不成三角形,那么围成与围不成,跟三角形的什么有关系呢?
生:三角形的边。
师:大家回答得很好,三角形的边有什么样的关系呢?这就是我们今天要研究的问题。(板书:三角形边的关系)
Ⅱ、自主探究,提炼规律
师:下面让我们一起来完成这个探究活动,请齐读操作要求,开始!
生:进行实验并完成表格填写(教师进行指导)
组别小棒的长度能否围成三角形两边之和与第三边的大小关系
13583+5○8;3+8○5;5+8○3
245104+5○10;4+10○5;5+10○4
33453+4○5;3+5○4;4+5○3
458105+8○10;5+10○8;8+10○5
师:坐好。大家认为有哪几组是围不成三角形的呢?
生:前两组。
师:让我们一起来看看
生1,你发现的两边之和与第三边的关系是什么?
生1:3+5=8,3+8>5,5+8>3(课件展示:3、5、8,围不成)
师:很棒,我们继续来看第2组
生2,你发现了什么?(教师手指两边之和与第三边的关系)
生2:4+55,5+10>4(4,5,10,围不成)
师:为什么这两组的小棒围不成三角形呢?
生:3+5=8,4+5<10(或有两条边的长度的和没有第三条边长)
师:说得很好,也就是说两边之和小于或等于第三边,所以这三根小棒围不成三角形。(板书:两边的和≤第三边)
师:那围成三角形的就是3、4组了,对吧?
生:对。
师:生3,你发现的两边之和与第三边的关系是什么?
生3:3+4>5,3+5>4,4+5>3看第三组的课件演示(3、4、5,围成)
师:这个呢?
生3:能围成,5+8>10,5+10>8,8+10>5
师:回答得非常棒,大家试一试将3、4组与1、2组进行对比,为什么3.4组能围成三角形?
生:它3个都是大于的(有些同学会回答:两边的和比第三条边大)。
师:那也就是说围成三角形是两边的和大于第三边(板书:两边的`和>第三边?)
师:这个有问题么,大家看看屏幕,1、2组也有两边的和大于第三边呀?
生:都大于。
师:对!必须强调每组都是,即是“任意”,我们把它表示为:任意两边的和大于第三边。(板书:擦去?,补任意)
师:我们发现的规律就出现在课本的82页,大家把它画起来。(5秒)齐读。
生:三角形的任意两边之和大于第三边。(板书:三角形的任意两边之和大于第三边)
Ⅲ、巩固应用,变式提升
例判断下列三条线段是否能围成三角形?
(1)6,7,8(2)4,5,9(3)3,6,10
(学生先用三条式子来判断是否能围成三角形,教师再让学生讨论交流好方法)
通过比较任意两边之和是否大于第三边,来判断是否可以围成三角形。
教师指导学生:将两条短的边相加与最长的边相比,如果大于,就能围成三角形。
1、判断以下几组小棒能否围成三角形,能的打“√”,不能的打“×”,并说明理由。
(1)3cm4cm5cm()
(2)3cm3cm3cm()
(3)2cm2cm6cm()
(4)3cm3cm5cm()
注:学生学会将两条短的边相加与最长的边相比,如果大于,就能围成三角形,从而提高做题速度。
2、生活中的数学
3、巩固提升
小明想要给他的小狗做一个房子,房顶的框架是三角形的,其中一根木条是3分米,另一根是5分米。
(1)第三根木条可以是多少分米?(取整数)
(2)第三边的木条的长度是a分米,那么a的取值范围是()
四、回忆新知,归纳总结
师:通过本节课的学习,你收获了什么?
生:三角形任意两边之和大于第三边。(等等)
五、板书设计
三角形边的关系
不能围成三角形能围成三角形
两边之和≤第三边任意两边之和>第三边
三角形任意两边之和大于第三边
四年级下册《三角形三边关系》教学设计 篇3
一、教学目标
1、掌握梯形、等腰梯形、直角梯形的有关概念。
2、掌握等腰梯形的两个性质:等腰梯形同一底上的两个角相等;两条对角线相等。
3、能够运用梯形的有关概念和性质进行有关问题的论证和计算,进一步培养学生的分析能力和计算能力。
4、通过添加辅助线,把梯形的问题转化成平行四边形或三角形问题,使学生体会图形变换的方法和转化的思想
二、教法设计
小组讨论,引导发现、练习巩固
三、重点、难点
1、教学重点:等腰梯形性质。
2、教学难点:解决梯形问题的基本方法(将梯形转化为平行四边形和三角形及正确运用辅助线)。
四、课时安排
1课时
五、教具学具准备
多媒体,小黑板,常用画图工具
六、师生互动活动设计
教师复习引入,学生阅读课本;学生在教师引导下探索等腰梯形的性质,归纳小结梯形转化的常见的辅助线
七、教学步骤
【复习提问】
1、什么样的四边形是平行四边形?平行四边形有什么性质?
2、小学学过的梯形是什么样的`四边形。
(让学生动手画一个梯形,并找3名同学到黑板上来画,并指出上、下底和腰,然后由学生总结出梯形的概念)。
【引入新课】(板书课题)
梯形同样是一个特殊的四边形,与平行四边形一样,它也有它的特殊性,今天我们就重点来研究这个问题。
1、梯形及梯形的有关概念
(l)梯形:一组对边平行而另一组对边不平行的四边形叫做梯形。
(2)底:平行的一组对边叫做梯形的底(通常把较短的底叫上底,较长的底叫下底)。
(3)腰:不平行的一组对边叫做梯形的腰。
(4)高:两底间的距离叫做梯形高。
(5)直角梯形:一腰垂直于底的梯形。
(6)等腰梯形:两腰相等的梯形。
(以上这一过程借助多媒体或投影仪演示)
提醒学在注意:
①梯形与平行四边形同属于特殊的四边形,因为它们具有不同的特殊条件,所以必然有不同的性质。
②平行四边形的对边平行且相等,而梯形中,平行的一组对边不能相等(让学生想一想,为什么不能相等)。
③上、下底的概念是由底的长短来定义的,而并不是指位置来说的。
2、等腰梯形的性质
例1如图,在梯形中,求证:。
分析:我们学过“等腰三角形两底角相等”,如果能将等腰梯形在同一底上的两个角转化为等腰三角形的两个底角,问题就容易解决了。
证明:(略)
由此得出等旧梯形的性质定理:等腰梯形在同一高上的两个角相等。
例2如图,求证:等腰梯形的两条对角线相等。
已知:在梯形中,求证:。
分析:要证,只要用等腰梯形的性质定理得出,然后再利用,即可得出。
证明过程:(略)。
由此得到多腰梯形的第一条性质:等腰梯形的两条对角线相等。除此之外,等腰梯形还是轴对称图形,对称轴是过两底中点的直线。
3、解决梯形问题常用的方法
在证明梯形性质定理时,我们采取的方法是过点作交于,从而把梯形问题转化成三角形来解,实质上是相当于把采取平行移动到的位置,这种方法叫做平行移动(也可移对角线),这是解决梯形问题常用的方法之—(让学生想一想,还可以用什么样的方法作辅助线来解决梯形问题,多找几名学生回答,然后教师总结,可借助多媒体演示见图)。
(1)“作高”:使两腰在两个直角三角形中。
(2)“移对角线”:使两条对角线在同一个三角形中。
(3)“延腰”:构造具有公共角的两个等腰三角形。
(4)“等积变形”,连结梯形上底一端点和另一腰中点,并延长与下底延长线交于一点,构成三角形。
综上所述:解决梯形问题的基本思想和方法就是通过添加适当的辅助线,把梯形问题转化为已经熟悉的平行四边形和三角形问题来解决。
【总结、扩展】
小结:(以提问的方式总结)
(1)梯形的有关概念。
(2)梯形性质(①-③)。
(3)解决梯形问题的基本思想和方法。
(4)解决梯形问题时,常用的几种辅助线。
四年级下册《三角形三边关系》教学设计 篇4
教学内容
《义务教育课程标准实验教科书数学》(人教版)四年级下册。
教材和学情分析
《三角形边的关系》这节课是人教修订版四年级数学下册第五单元第二课时的内容。在平面图形里,学生已经学习了线段、射线、直线、角,初步认识了三角形,知道三角形有3条边、3个顶点、3个角,三角形还具有稳定性等知识,虽然知道三角形由3条线段围成,但是对于“任意的3条线段不一定都能围成三角形”这一知识却没有任何经验。学生对三角形任意两边之和大于第三边的规律只是停留在生活经验的基础上,只能初步感悟笔直的路比拐一个弯要近。所以学好这部分内容,不仅可以从形的方面加深对周围事物的理解,发展学生的空间观念,还可以在动手操作、体验理解、思考探索、生活应用等方面发展学生的思维,提高解决实际问题的能力,同时也为进一步学习三角形的分类、三角形内角和、三角形的面积、甚至初中的勾股定理、三角函数等内容打下坚实基础。
教学目标
1、经历用小棒围三角形来探究三角形三边关系的过程,发现、理解三角形任意两边的和大于第三边以及两点之间的所有连线中线段最短,并运用这一发现解决生活中的实际问题。
2、在探索活动过程中,积累猜想、观察、分析、对比、计算、比较、归纳、验证等数学活动经验和方法,培养学生的动手操作能力和策略意识。
3、渗透建模思想,体验数据分析、数形结合方法在探究过程中的作用。
教学重点
探索并发现三角形任意两边的和大于第三边。
教学难点
较短两根小棒的长度和等于第三根时能不能围成三角形。
教学准备
学生用小棒(每组5根)、记录单、教学课件
教学过程
一、情景导入
明明要做一个三角形的航模底座,于是他将一根钢管剪成了这样的三段。(师出示)仔细观察,你发现了什么问题?
生:围不成三角形
师:其他同学同意吗?
师:为什么会围不成?(长的太长)
师:你们觉得怎么样就能围成三角形?
生:缩短最长边。
师:我们试试看。(缩短最长边)最长的钢管变短后还真围成了。
师:看来并不是任意三根钢管都能围成三角形,三角形三条边的长度之间一定是有关系的,那会有什么关系呢?今天我们就一起探索三角形边的关系。
(板书课题:三角形边的关系)
二、围三角形探究三角形边的关系
1、围三角形的活动
师:接下来我们就借助小棒进行研究,每个信封中有4根小棒,上面标有小棒的长度。两人一组,每次任选3根小棒围一围,看能不能围成三角形,把围的结果写到记录单上。好,开始活动。
(学生活动)
引导认为3 5 8厘米能围成的同学:3 5 8厘米这组小棒能不能围成?确实是围成了(师拍照)。
引导认为3 5 8厘米围不成的同学:3 5 8厘米这组小棒能不能围成?说说为什么围不成?3加5正好等于8,和8厘米的小棒就重合了(师拍照),当3厘米和5厘米的小棒拱起来时就更不能和8厘米小棒的端点重合了。可人家还真有人围成了(师操作)你们觉得这围成了没有?是啊,看似围成了,实际上小棒的端点并没有重合,还差一点点。所以这三根小棒围不成。如果让同学们知道了你这种想法,大家一定会很佩服你的。
2、汇报围三角形的情况
师:刚才通过动手操作我们发现有些能围成三角形,有些就围不成。(板书:能围成围不成)谁来具体说说你们研究的情况?
(尽可能让认为3 5 8厘米能围成的学生先汇报)
师:大家看看有哪些数据和你们的结果不一样?
预设一:若学生有不同意见
预设二:若学生没有不同意见
师:(生说师打问号做标记)还有不同的吗?打问号的小棒能不能围成三角形?我们怎么办呢?(怎么验证我们的猜测?)
生:再来围一围
师:是个好办法,那就听大家的。,我们再围一围。(学生活动)
师:这是我刚拍到的照片(解决能围成的情况)
3 5 8厘米这组小棒,我拍到两组同学的照片,他们围成了吗?这组呢?
生:围成了。师:都认为围成了?(若生都认为围成了,教师放大照片问:再看看,围成了没有?)
生:没围成。(说说你的理由?)
(把照片放大)
师:如果再调整下去又会怎样呢?我们看看这个动画(出示课件)
你觉得这三根小棒能围成三角形吗?请说出你的理由?(生述)
师评价:谢谢你,你的表达真清楚。
3 5 8厘米这组小棒,我拍到两组同学的照片,他们围成了吗?这组呢?
生:围成了。师:都认为围成了?(若生都认为围成了,教师放大照片问:再看看,围成了没有?)
生:没围成。(说说你的理由?)
(把照片放大)
师:如果再调整下去又会怎样呢?我们看看这个动画(出示课件)
你觉得这三根小棒能围成三角形吗?请说出你的理由?
3、探究围成三角形的条件
师:同样是三根小棒,为什么有些能围成三角形,有些就围不成?对比这些数据和图形,你们发现了什么?先独立思考,然后将你的想法在小组内交流。
师:谁来和大家分享一下你们的发现?
预设一
生:我发现三角形任意两边的和大于第三边。
师:你严谨准确的语言和高度概括的能力很值得我们学习。能举例子说说吗?
生:比如3、4、5厘米的小棒,3+4>5,3+5>4;4+5>3
(学生说,师板书)
师评价:说的真好!你真是一位善于表达的孩子
师:谁能将这个三角形三条边长度之间的这种关系,用自己的话说一说?
生:三角形每两边的和大于第三边
生:三角形哪两边的和都大于第三边
师:同学们理解的都非常到位,同桌口算一下4 5 8厘米的三角形是不是也有这样的关系?(生算)(教师发现一旦口算正确的学生就第一时间让写到黑板上)
师:这个三角形的三条边是不是也有这样的关系?(是)
预设二
生:只要随便两边的和大于第三边就能围成三角形。
师:听了他的发言,你想说什么?
生:可3,5,8厘米,5+8大于3,但也围不成呀?
师评价:正是由于这位孩子用心倾听、深入思考才有了与众不同的'发现,感谢你为我们带来了新的思考。
师:5+8大于3,3+8也大于5,为什么围不成呀?
生:可是3+5等于8,所以就围不成。
师:看来仅仅是其中两根小棒的长度和大于第三根小棒并不一定能围成三角形,而必须是……应该说成是……哪两边的和大于第三边?
生:三角形每两边的和大于第三边
师:明白他的意思吗?谁能用你的话说一说。
生:三角形哪两边的和都大于第三边。
师:什么叫哪两边的和都大于第三边?(生述)
师:理解的非常到位,每两边也就是任意两边。
师:谁能举例子说说这句话的意思?
生:比如3、4、5厘米的小棒,3+4>5,3+5>4;4+5>3
师评价:说的真好!仅仅用3个式子就很清楚的让我们理解了任意两边的和大于第三边。
师:同桌口算一下4 5 8厘米的三角形是不是也有这样的关系?(生算)(教师发现一旦口算正确的学生就第一时间让写到黑板上)
师:这个三角形的三条边是不是也有这样的关系?(是)
三、应用所学,解决问题
四、课堂小结
这节课上我们由刚上课时发现问题,提出问题到课堂上的分析问题,再到刚才的解决问题,尤其是在做航模底座的问题中,经历了做不成-能做成-更美观-实用性的系列研究过程,不仅学到了数学知识,还学到了数学的思想和方法,积累了数学活动的经验,这就是学习数学的价值所在。