网站导航
老地方 > 百科 > 教学教案 > 正文

《全等三角形》教学设计

2025/11/28教学教案

老地方整理的《全等三角形》教学设计(精选4篇),希望这些优秀内容,能够帮助到大家。

《全等三角形》教学设计 篇1

教学目标

一、教学知识点

1、三角形全等的“边边边”的条件。

2、了解三角形的稳定性。

二、能力训练要求

1、经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程。

2、掌握三角形全等的“边边边”的条件,了解三角形的稳定性。

3、在探索三角形全等的条件及其运用的过程中,能够进行有条理的思考并进行简单的推理。

三、情感与价值观要求

1、使学生在自主探索三角形全等的条件的过程中,经历画图、观察、比较、推理、交流等环节,从而获得正确的学习方式和良好的情感体验。

2、让学生体验数学来源于生活,服务于生活的辩证思想。

教学重点

三角形全等的条件

教学难点

三角形全等的条件

教学方法

动手操作、讨论、引导教学法

教具准备

多媒体投影、一幅三角尺、量角器

教学过程

一、创设问题情景,引入新课

1、复习提问:什么样的两个三角形是全等三角形?全等三角形有什么特征?

答:能够完全重合的两个三角形是全等三角形。全等三角形的对应边相等,对应角相等。

2、已知:如图,△ABC≌△DEF,请找出图中的对应边和对应角。

答:AB=DE,BC=EF,AC=DF,∠A=∠D,∠B=∠E,∠C=∠F。

3、若有一个三角形纸片,你能画一个三角形与它全等吗?如何画?

答:能,先量出这个三角形纸片的每边的长,各个角的度数,然后作出一个三角形,使它的每边长,每个角的度数分别等于已知三角形纸片的每边长,每个角,这样作出三角形一定与已知三角形纸片全等。

4、如上图,△ABC与△DEF满足上述六个条件的全部可以使△ABC与△DEF全等。如果满足上述六个条件中的一部分是否能保证△ABC与△DEF全等?条件能否尽可能少吗?一个条件行吗?两个条件、三个条件呢?

这节课就来探索三角形全等的条件。

二、新课讲授

1、只给出一个条件(一条边或一个角)画三角形时,大家画出的三角形一定全等吗?

2、给出两个条件画三角形时,有几种可能的情况?每种情况下作出的三角形一定全等吗?

⑴、给出一个内角,一条边;⑵、给出两个内角;⑶、给出两条边。

分别按照下面的条件做一做:

⑴、三角形一个内角为30°,⑵、三角形的两个内角⑶三角形的两条边

一条边为3cm;分别为30°和50°;分别为4cm,6cm。

结论:只给出一个条件或两个条件时,都不能保证所画出的三角形一定全等。

〔注解〕:若给出的条件能够使两个三角形全等,则班上所有同学所作的三角形都应该全等;若给出的条件不能使两个三角形全等,只要按照同一要求作图,只要有两位同学作的三角形不全等,即可以说明给出的条件不能使两个三角形全等。特别地,只要能举出相关的反例能说明两个三角形不全等,可以适当减少作图环节。

3、如果给出三个条件画三角形,你能说出有哪几种可能的情况?

⑴、都给角:给三个角;⑵、都给边:给三条边;

⑶、既给角,又给边:①给一条边,两个角;②给两条边,一个角。

按照下面的条件做一做:

⑴、已知一个三角形的三个内角分别为40°,60°和80°,你能画出这个三角形吗?

把你画的三角形与同伴画的进行比较,它们一定全等吗?

结论:三个内角对应相等的两个三角形不一定全等。

⑵、已知一个三角形的三条边分别为4cm、5cm和7cm,你能画出这个三角形吗?

把你画的三角形与同伴画的进行比较,它们一定全等吗?

结论:边边边公理

三边对应相等的'两个三角形全等,简写为“边边边”或“SSS”。

AB=DE

AC=DF△ABC≌△DEF(SSS)

BC=EF

注意:三边对应相等是前提条件,三角形全等是结论。

5、由上面结论可知,只要三角形三边长度确定了,这个三角形的形状和大小就完全确定了。

如图,是用三根长度适当的木条钉成一个三角形框架,所得框架的形状固定吗?用四根木条钉成的框架的形状固定吗?

三角形框架形状和大小是固定不变的,四边形框架形状是可以改变的。

三角形具有稳定性;四边形不具有稳定性。

举例说明生活中经常会看到应用三角形稳定性的例子?(投影片)

三、例题与练习

例1如图,当AB=CD,BC=DA时,图中的△ABC与△CDA是否全等?并说明理由。

答:△ABC与△CDA是全等三角形。

证明:在△ABC与△CDA中

AB=CD(已知)

∵AD=CB(已知)

AC=CA(公共边)

∴△ABC≌△CDA(SSS)

例2变式题如图,当AB=CD,BC=DA时,你能说明AB与CD、AD与BC的位置关系吗?为什么?

答:能判定AB∥CD

证明:在△ABC与△CDA中

AB=CD(已知)

∵AD=CB(已知)

AC=CA(公共边)

∴△ABC≌△CDA(SSS)

∴∠3=∠4,∠1=∠2(全等三角形对应角相等)

∴AB∥CD,AD∥BC(内错角相等,两直线平行)

四、课堂小结

1、通过这节课的学习活动你有哪些收获?

(1)只给出一个条件或两个条件时,都不能保证两个三角形一定全等。

(2)三个内角对应相等的两个三角形不一定全等。

(3)边边边公理:三边对应相等的两个三角形全等,简写为“边边边”或“SSS”。

(4)三角形具有稳定性,四边形不具有稳定性。

2、你还有什么想法吗?

五、作业

课本第160页,习题5.7数学理解第1、2题;问题解决第1题

六、板书设计

1、三边对应相等的两个三角形全等,简写为“边边边”或“SSS”。

AB=DE

AC=DF△ABC≌△DEF(SSS)

BC=EF

2、三角形具有稳定性。

《全等三角形》教学设计 篇2

一、课程标准

了解全等三角形的概念和性质,能够准确地辨认全等三角形中的对应元素。

二、教材分析

“全等三角形”是人教版义务教育课程标准实验教科书《数学》八年级上册第十一章《全等三角形》第1节的内容。它是学习全等三角形全等条件的理论基础,是对线段、角、三角形的提高,是证明线段相等、角相等的重要依据,为学习四边形、等腰三角形、直角三角形、线段的垂直平分线、角的平分线的有关知识奠定基础。

三、教学建议

1.注重数学学习的活动性,给学生足够的活动空间。

本节学习全等形与全等三角形的概念和性质,通过一个“观察”和两个“思考”,让学生活动得出结论。

2、注重数学学习的基础性,加强基本技能的教学。

教学活动中,学生形成了数学知识和技能后,进行一定量的练习,使学生的掌握能够达到一定的熟练程度。

3.注重数学的规范性,加强数学语言教学。

用符号表示全等三角形及对应元素,不仅要求学生能够正确熟练使用,还要求学生能够感受到数学符号语言的简约美、严谨美。教学中,教师需要进行必要的示范,培养学生具有良好的表达习惯。

4.注重数学学习的人文性,选择适宜的教学素材。

教学中选取的素材要贴近学生的生活实际,让学生感受到数学就在身边。同时,也让学生逐步学会用数学的眼光观察身边的世界。

四、教学目标

1.知识和技能:

①理解全等形、全等三角形的概念及全等三角形表示方法;

②能熟练找出全等三角形的对应边、对应角和对应顶点;

③掌握全等三角形形对应边、对应角相等的性质,并能够利用性质进行简单的几何推理。

2.过程和方法:

①经历探究全等图形的形状、大小、位置关系和变换的过程,体验获取数学知识的过程。

②通过学生的实际动手操作,提高学生的概括能力。

③通过学生自主探索,培养学生的识图能力,提高学生的观察能力和分析能力。

3.情感态度与价值观:

①通过平移、翻折、旋转等图形变换,培养学生运动的观点。

②联系学生的生活环境,创设情景,使学生通过观察、操作、交流和反思,获得必需的数学知识,激发学生的学习兴趣。使学生感受数学中的图形美,培养多角度审视问题的意识。

五、教学重点、难点

教学重点:

①能准确地在图形中识别出对应边、对应角。

②全等三角形的性质,并利用其基本性质进一些简单的推理和计算。

教学难点:

能在全等变换中准确找到两个全等三角形的对应元素(对应边、对应角)。

六、主要学习方法及教学策略

①引导学生预习教材内容养成良好的自学习惯,启发学生发现问题、思考问题,培养学生逻辑思维能力。

②采用启发、分析、设疑、讲练结合的方法,通过图片,激发学生的学习兴趣.逐步设疑,引导学生积极参与讨论,肯定成绩,使其具有成就感,提高他们学习的兴趣和学习的积极性。

七、教学过程

教学过程设计目的

课前准备辅助图片剪刀彩纸大头针

创设情境导入新课

1、观察下面图形,它们的形状与大小具有什么特征?

片断1:图案

片断2:

片断3:

2、学生讨论:

(1)从上面的片断中你有什么感受?上面这些图形有什么共同的特征?

(2)你能再举出生活的一些类似例子吗?

(3)动手操作:安排学生自己动手随意去做两个形状与大小相同的图形

图片的收集与制作:

收集学生做的较好的图片。讨论(或介绍)用复写纸、手撕、剪纸、扎针眼等制作类似图形的方法。1、通过问题,引导学生从图形的形状与大小的角度去观察图形。丰富的图形和问题容易引起学生的注意,使他们能很快地投入到学习的情境中。运用贴近学生生活的图案激发学生探究的兴趣。

2、它反映了现实生活中存在的大量的全等图形。通过动手实践,合作交流直观感知形状与大小完全相同的图形。

新知探究

引入新课:全等三角形

1.全等形的概念

(1)给出全等形的定义:能够完全重合的两个图形叫做全等形.

(2)你能再举出一些生活中的全等图形吗?3.引入新课,引起学生认识需要,为后面讲解全等作铺垫。

(3)观察下面三组图形,它们是不是全等图形?为什么?与同伴进行交流.

明确:如果两个图形全等,它们的形状一定相同,大小一定相等

(4)思考:刚才每组同学剪下的两个三角形是全等形吗?

全等三角形:能够完全重合的两个三角形叫做全等三角形.

(5)思考问题:

在图1中把⊿ABC沿直线BC平移,得到⊿DEF..

在图2中把⊿ABC沿直线BC翻折180度,得到⊿DBC.

在图3中把⊿ABC旋转180度,得到⊿AED.

123

思考:观察⊿ABC在平移、翻折、旋转过程中是否发生了改变?各图中的两个三角形全等吗?

①将重合的两个全等三角形中的一个沿一边所在的直线移动.②将重合的两个全等三角形中的一个以某一个顶点为中心旋转180度.③将重合的两个全等三角形中的一个以一边所在的直线为轴,翻折180度.

结论:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变.即平移、翻折、旋转前后的图形全等.

4.在感性认识的基础上提出全等形的概念。可以排除学生对几何的畏难心理,增强他们的信心.

5.通过动手实践,合作交流直观感知全等形和全等三角形的概念。

6.通过构图,为学生理解全等三角形的有关概念奠定基础。

7.通过动态的平移、翻折、旋转观察在这一过程中两个三角形的位置关系,培养学生对图形的识别能力。

2.对应顶点,对应边,对应角的'概念:

(1)观察图形思考:如右图,△ABC与△DEF全等,当△ABC与△DEF重合时

①与顶点A重合的点是哪个点?

②与∠A重合的角是哪个角?

③与边AB重合的边是哪条边?

【把两个全等三角形重合到一起时,互相重合的顶点叫做对应顶点;互相重合的角叫做对应角;互相重合的边叫做对应边.△ABC与△DEF全等可表示为:△ABC≌△DEF】

(2)根据上图完成下面的填空:

重合部分

名称

是否相等,说明理由

顶点B与顶点顶点C与顶点边AC与边边BC与边∠C与∠∠B与∠

总结:找全等三角形对应角、对应边、对应定点的方法

①全等三角形对应边所对的角是对应角;

②全等三角形对应角所对的边是对应边.

③有公共边的,公共边一定是对应边;

④有对顶角的,对顶角一定是对应角;

⑤有公共角的,公共角一定是对应角;

3.全等三角形的性质:

如上图,△ABC与△DEF全等,对应边有什么关系?对应角呢?学生探索得出全等三角形的性质:

(1)全等三角形的对应边相等;(2)全等三角形的对应角相等.8.通过学生观察,教师及时给出对应顶点、对应边、对应角的概念,有利于学生对知识理解。并强调全等符号的书写、意义,对应顶点写在对应位置上的意义

9.通过设计表格填空,让学生及时得到巩固,加深对概念的理解.

9.及时地归纳小结,为学生积累经验,使学生认知结构得到发展,提高学生的数学能力

10.自主探究,得出全等三角形的性质,从而提高学生的学习能力.

随堂练习

1、全等用符号表示,读作。

2、△ABC全等于三角形△DEF,用式子表示为。

3、△ABC≌△DEF,∠A的对应角是∠D,∠B的对应角∠E,则∠C与是对应角;AB与是对应边,BC与是对应边,AC与是对应边。

4、判断题:

(1)全等三角形的对应边相等,对应角相等。( )

(2)全等三角形的周长相等。( )

(3)面积相等的三角形是全等三角形。( )

(4)全等三角形的面积相等。( )

5.如图,已知ΔABC≌ΔFED,请说出它们的对应边和对应角

6.如图,△ABD≌△EBC.

①请找出对应边和对应角.

②如果AB=3cm,BC=5cm,求BE、BD的长.

③如果AB=3cm,DE=2cm,求BC的长.11.检查学生对本节课的掌握情况,加深学生对全等三角形性质的理解与掌握

课堂小结

1、回忆这节课:在自己动手实际操作中,得到了全等三角形的哪些知识?

2、找全等三角形对应元素的方法,注意挖掘图形中隐含的条件,如公共元素、对应角等,但公共顶点不一定是对应顶点;

3、在运用全等三角形的定义和性质时应注意规范书写格式。

4、通过本节的学习,你们有什么收获和困惑?你愿与大家分享吗?加深学生对知识的理解,促进学生对课堂的反思。对于学生的发言,教师要给予肯定的评价。

作业

必做题:教科书4页习题11.1第1题,第2题,第3题。

选做题:教科书92页习题13.1第4题。

板书设计

11.1全等三角形

1.全等三角形的概念

2.对应顶点.对应边.对应角

3.全等三角形的性质

《全等三角形》教学设计 篇3

教学目标

一、知识与技能

1、了解全等形和全等三角形的概念,掌握全等三角形的性质。

2、能正确表示两个全等三角形,能找出全等三角形的对应元素。

二、过程与方法

通过观察、拼图以及三角形的平移、旋转和翻折等活动,来感知两个三角形全等,以及全等三角形的性质。

三、情感态度与价值观

通过全等形和全等三角形的学习,认识和熟悉生活中的全等图形,认识生活和数学的关系,激发学生学习数学的兴趣。

教学重点

1、全等三角形的性质。

2、在通过观察、实际操作来感知全等形和全等三角形的基础上,形成理性认识,理解并掌握全等三角形的对应边相等,对应角相等。

教学难点

正确寻找全等三角形的对应元素

难点突破

通过拼图、对三角形进行平移、旋转、翻折等活动,让学生在动手操作的过程中,感知全等三角形图形变换中的对应元素的变化规律,以寻找全等三角形的对应点、对应边、对应角。

课前准备:

课件、三角形纸片

教学过程

一、出示学习目标

1、知道什么是全等形、全等三角形及全等三角形的对应元素。

2、知道全等三角形的性质,能用符号正确地表示两个三角形全等。

二、直观感知,导入新课

教师演示一些全等的图形的课件,让学生直观感知图片并寻找每组图片的特点。二、合作探究,学习新知

1.全等形

我们给这样的图形起个名称----全等形。[板书:全等形]

教师让学生们想生活中还有那些图形是全等形.

2.全等三角形及相关对应元素的定义

教师用多媒体动态演示两个能完全重合地三角形。定义全等三角形:能够完全重合的两个三角形,叫全等三角形。

[板书课题:

12.1全等三角形]

2.全等三角形的对应元素及表示

把三角形平移、翻折、旋转后,什么发生了变化,什么没有变?

归纳:旋转前后的两个三角形,位置变化了,但形状大小都没有变,它们依然全等。

以多媒体上的图形为例,全等三角形中的对应元素

(1)对应的顶点(三个)---重合的顶点

(2)对应边(三条)---重合的边

(3)对应角(三个)---重合的角

归纳:方法一---全等三角形对应角所对的`边是对应边,两个对应角所夹的边是对应边;方法二:全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。

另外:有公共边的,公共边一定是对应边;有对顶角的,对顶角一定是对应角。

.用符号表示全等三角形

抽学生表示图一、图二、三的全等三角形。

3.全等三角形的性质

思考:全等三角形的对应边、对应角有什么关系?为什么?

归纳:全等三角形的对应边相等、对应角相等。

4.小组活动合作升华

学生分小组动手操作摆图形

小组合作完成位置不同的三角形,写出它们的对应边,对应角。强调其他小组学生说的时候,自己一定要注意倾听,能够分辨出对错来。

三、巩固练习

四、教师用多媒体展示习题,学生做巩固练习。

五、小结:本节课都学到了什么

六、作业:

必做题课本33页习题第1题、2题.

选做题课本第34页第6题。

《全等三角形》教学设计 篇4

教材内容分析:

本节课内容是全章学习的开篇课,也是本章学习的主线,主要介绍全等三角形的概念和性质。通过对生活中的全等图形和抽象的几何图形的观察,使学生对全等有一个感性的认识,建立对应的概念,掌握寻找全等三角形中对应元素的方法,理解全等三角形的性质,为学习判定两个三角形全等以及第十六章轴对称图形提供了必要的理论基础。

全等三角形中严密的对应关系能够锻炼学生的观察力和推理能力,对它的深入研究有助于学生理解数学的本质,提升思维水平。

教学目标:

1.了解全等形、全等三角形的概念;理解全等三角形的性质; 2.能够准确找出全等三角形的对应元素,逐步培养学生的识图能力;

3.让学生通过观察生活中的全等形和动手操作获得全等三角形的体验,在探究和运用全等三角形性质的过程中感受到数学活动的乐趣。

教学重难点及突破:

重点:全等三角形的概练和性质;

难点:能在全等变换中准确找到对应角、对应边。

教学突破:通过生活中的实例观察、感受全等形和全等三角形,动手操作、合作交流,亲身体验创造全等三角形,加深全等三角形的有关概念的理解。

教学准备:

1.教师准备:多媒体课件、剪刀、白纸等; 2.学生准备:白纸、剪刀等。

教学流程:创设情境,引入新知→合作交流,探索新知→手脑并用,理解新知→合作交流,应用新知→课堂练习,巩固新知→师生互动,小结新知。

教学过程设计:

一、创设情境,引入新课。

1、与学生谈话,努力走近学生之中。

2、游戏情景,引入新课出示课件:大家来找茬游戏

引导:

1、观察两副图形在形状、大小、位置方面的共同点

2、两副图形形状、大小若相同该如何检验?

引导:什么样的图形叫做全等形?

定义:能够完全重合的两个图形叫做全等形;列举生活中的实例(一百元人民币)感知全等形。

二、合作交流,探索新知。

1、手脑并用,感受新知

用剪刀在一张纸上剪出两个形状、大小完全一样的三角形,引出全等三角形教学。

2、观察诱导,探究新知。 (1)全等三角形相关概念

引导观察:课件操作演示两个三角形完全重合。引导学生类比得出全等三角形定义;

中国人民邮政

能够完全重合的两个三角形叫做全等三角形引导学生概括对应顶点、对应边、对应角定义;

全等三角形中,互相重合的顶点叫对应顶点.互相重合的边叫对应边.互相重合的角叫对应角。

(2)全等三角形的表达式

引导学生书写全等三角形的表达式:△ABC≌△DEF,读作:△ABC全等于△DEF。

温馨提示:

①记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上。 ②全等符号“≌”中“∽”表示形状相同,“=”表示大小相等,合起来就是形状相同、大小相等,即全等。

引导学生感悟:三角形全等表达式充分体现出数学的秩序性和精确性,使用规范的表达式将有助于解决相关的问题

(3)全等三角形性质

引导学生观察并概括全等三角形性质

全等三角形的性质:全等三角形的.对应边相等,对应角相等。用几何语言表达全等三角形性质:∵△ABC≌△DEF(已知) ∴AB=DE,AC=DF,BC=EF;

∠A=∠D,∠B=∠E,∠C=∠F(全等三角形的对应边相等,对应角相等)

3、合作交流,探究新知(1)手脑并用,体验新知

利用刚才剪下的两个全等三角形,在课桌上摆出不同形状的图形,再与同伴合作交流,探究如何通过操作其中一个三角形使它们再次重合?

通过课件展示引导学生理解只要两个三角形的形状大小相同,不管位置怎样变化,都能通过平移旋转翻折的方式使之重合。

(2)观察交流,探究新知

引导学生观察,交流探索规律。在全等三角形中,一般是:1.有公共边,则公共边为对应边; 2.有公共角,则公共角为对应角;

3.最大边与最大边(最小边与最小边)为对应边;最大角与最大角(最小角与最小角)为对应角;

引导学生观察,交流发现规律。

针对所得的对应角、对应边情况引导学生总结:规范地写出全等三角形表达式具有重要的意义,根据表达式中字母的对应情况就能够,准确判断出全等三角形的对应顶点、对应边、对应角。

三、合作交流,应用新知。

例:如图,△ABO≌△DCO,指出所有的对应边和对应角。

解:∵△ABO≌△DCO (已知) ∴AB=DC,BO=CO,AO=DO (全等三角形的对应边相等)

∠A=∠D,∠ABO=∠DCO,∠AOB=∠DOC (全等三角形的对应角相等)变式:若上图中△ABC≌△DCB,试写出这两个三角形中相等的边和相等的角。

解:∵△ABC≌△DCB (已知) ∴AB=DC,BC=CB,AC=BD (全等三角形的对应边相等)

∠A=∠ D,∠ABC=∠DCB,∠ACB=∠DBC (全等三角形的对应角相等)

四、课堂练习,巩固新知。

(1)如图,△ABD≌△EBC,AB=3cm,BC=5cm,求DE的长.

解:∵△ABD≌△EBC,且AB=3cm,BC=5cm (已知)

∴AB=EB=3cm,BC=BD=5cm (全等三角形的对应边相等) ∴DE=BD-EB=5-3=2cm

(2)如图,已知△ABC≌△ADE,想一想: ∠ BAD= ∠ CAE吗?为什么?

解:相等,

∵△ABC≌△ADE(已知) ∴∠BAC=∠DAE(全等三角形对应角相等) ∴∠BAC—∠DAC=∠DAE—∠DAC(等式性质)即∠BAC=∠DAE

五、师生互动,小结新知。

学习了这堂课你有哪些收获?并把它与同伴一起分享。

1、全等形的定义:能够完全重合的两个图形,叫做全等形。

2、全等三角形的定义:能够完全重合的两个三角形叫做全等三角形。

3、全等三角形的性质:全等三角形对应边相等,对应角相等。

4、寻找全等三角形的对应边、对应角得规律。 (1)观察图形特点;

(2)观察表达式(对应关系)

六、布置作业。

课本P92习题15.1,第

2、4题。

七、教后感

······

板书设计:

15.1全等三角形

定义:

表示性质:

(学生板书)