网站导航
老地方 > 百科 > 教学教案 > 正文

乘方教学设计

2025/12/17教学教案

老地方整理的乘方教学设计(精选4篇),希望这些优秀内容,能够帮助到大家。

乘方教学设计 篇1

教学目标

掌握幂的乘方法则,并能够运用法则进行计算。

会进行简单的幂的混合运算。

在推导法则的过程中,培养学生观察、概括与抽象的能力;在运用法则的过程中培养学生思维的灵活性,以及应用“转化”的数学思想方法的能力。

让学生通过参与探索过程,培养合作、探索问题的能力,以及质疑、独立思考的习惯。

重点难点

重点

幂的乘方法则的运用。

难点

幂的乘方法则的推导以及幂的混合运算。

教学过程

一、复习导入

1.表示什么意义?表示什么意思呢?

2.同底数幂乘法法则是什么,它是怎样推导的?

通过讨论,使学生正确读出式子并理解式子所表达的运算,指出这种式子表达的是幂的乘方运算,怎样进行幂的乘方运算呢?

二、新课讲解

探究新知

1.思考:

①请根据的意义计算出它的结果,并想一想每一步计算的依据是什么?

②你能说出、的意义吗?

③请你计算、,并想一想每一步计算的依据是什么?

(鼓励学生站起来回答,培养学生数学表达的能力)

2.发现:

①从上面的计算中你发现了这几道题的运算结果有什么共同之处吗?从中你能发现运算的方法吗?猜一猜的结果是什么?

②验证猜想,得出结论

===(m,n都是正整数)

用语言叙述为:幂的乘方,底数不变,指数相乘。

三、典例剖析

例1计算:

(1);(2);(3)(m是正整数);(4)(n是正整数)

要求学生读出式子并按法则运算,提高符号演算的能力。注意(2)应读成a的3次幂的4次方的相反数(或者-1乘以a的3次幂的4次方),强调求相反数是运算的最后一步,训练学生在计算式子前先正确理解式子的良好习惯。

例2计算:

学生独立思考后进行交流,交流时要求学生按照先读式子,再分析式子的步骤给全班同学讲解。重视数学的表达和交流能促进学生养成良好的思维能力和思维习惯。

四、课堂练习

基础练习

1.填空:

(1);(2);

2.下面的计算对不对?如果不对,应怎样改正?

教师要注意发现学生的错误,组织学生对错误进行分析,对于第2题可以引导学生分析导致错误的原因,(1)是混淆了幂的乘法运算,(2)是把两个指数理解成了3的2次方。强调正确记忆法则,仔细分析式子里的运算。

提高训练:

3.对比同底数幂的乘法法则和幂的乘方法则,你有好的方法来记忆吗?

引导学生观察两种运算的'共同点。幂的这两种运算最终都转化成了对指数的运算,其中幂的乘法转化成了指数的加法,幂的乘方转化成了指数的乘法,初一看两个法则截然不同,但从转化的角度来看,它们又有共同之处,那就是都将原来的幂的运算降了一级,乘法变了加法,乘方变了乘法。

4.自编两道同底数幂的乘法、幂的乘方混合运算题,并与同学交流计算过程与结果。

学生活动后,教师选取编的好的题向全班展示,提高学生的兴趣。

5.已知,求的值。

逆向运用幂的运算性质,能培养学生思维的灵活性。由,我们不能求出m,n的值,但我们可以从入手,观察到,从而可以通过整体代入来求解。

五、小结

师生共同回顾幂的运算法则,互相交流解答运算题的经验,教师对课堂上学生掌握不够牢固的知识进行辨析、强调与补充,学生也可以谈一谈个人的学习感受。

六、布置作业

1.P40第2题

2.自编两道同底数幂的乘法、幂的乘方混合运算题,并计算。

乘方教学设计 篇2

教学目标

知识与技能:

1、会推导幂的乘方法则,并还能运用幂的乘方性质进行有关计算。 2、幂的乘方与同底数幂的乘法的正确区分。

过程与方法

通过对现实事物如正方体的体积的认识初步了解幂的乘方的形式,体会幂的乘方的应用价值。

情感﹑态度与价值观

通过师生共同交流,学生自主发言,渗透数学知识解决实际问题,激发学生学习的兴趣,帮学生树立自信心。

学情介绍

从学生的认知规律看,他们已经学习了乘方的意义﹑幂的意义以及

同底数幂的乘法,幂的乘方其实就是以上的结合,从教学中引导学生讨论交流。

内容分析

本节课是在前面学习的基础上进一步学习幂的乘方,让学生体会乘方运算是一种比乘法还要高级的运算,提高学生学习兴趣。

教学重难点

重点:幂的乘方法则的理解和应用。

难点:幂的乘方与同底数幂的乘法运算性质的区分。

教学方法及教具准备

教学方法:思考—探索—发现—归纳教具准备:多媒体演示

教学过程

一﹑复习

1﹑学生叙述同底数幂的乘法运算法则,并用字母表示。 an=am+n(m﹑n都是正整数)

2﹑am·

用语言叙述为:同底数幂相乘,底数不变,指数相加。

3﹑复习练习⑴102×104=xx⑵an+1×an—1=xx_ ⑶2×2=xx ⑷x·x·x·x=xx_ n n 2 2 2 2

二﹑知识准备

1﹑一个正方体的棱长是10cm,则它的体积是多少?103=10×10×10 2﹑一个正方体的`棱长是102cm,则它的体积是多少?3﹑100个104相乘怎么表示?又该怎么计算呢?(104)100=104×104×?×104(100个104)4﹑猜一猜m ··a(乘方的意义)(am)100=am·am· =am+m+···m(同底数幂的乘法法则)=a 100m(乘法的意义)

三﹑新授1﹑猜一猜

(am)n=amn(m,n为正整数)推导:

(am)n= am·am·

··am(n个am)=am+m+···+m(n个m)=a mn结论:幂的乘方的运算法则:(am)n=amn(m,n为正整数)用语言叙述:幂的乘方,底数不变,指数相乘。

2﹑师生共同完成。(1)(103)5(2)(a4)2(3)(am)2(4)—(x4)3解:

(1)原式=103×5=1015(2)原式=a4×2=a8(3)原式=a m×2 =a 2m(4)原式=—x12 3﹑学生练习

(1)(106)2(2)(am)4m是正整数(3)—(y3)2(4)(—x3)2(5)(an)3(6)—(x2)m 4﹑判断正误,错误的请改正。

(1)x·x=2x(2)x+x=x(3)a·a=a(4)—(a3)4=a12 4 2 6 2 2 4 3 3 3在讲解的过程中强调同底数幂的乘法与幂的乘方的区别,以及符号的注意。

5﹑计算

(1)x2·x4+(x3)2(2)(a3)3·(a4)3这两题是混合运算,先乘方后乘法。 6﹑公式的逆向应用m nn =an若(am)n=am则am =(am)n =(an)m例如:

x12=(x2)() =(x6)()=(x3)() =(x4)()=x7?x()=x?x() a3m=(a3)()=(am)()=a3·a()=am·a() 7﹑公式逆用的例题

1、若am=2,an=3,求① am+n的值。

② a 3m+2n的值。

2、若9×27x= 34x+1,求x的值。

四﹑知识比较五﹑板书设计六﹑课堂小结

本节课学习了幂的运算的第二种,幂的乘方,掌握新知识的同时,

但不能混淆,也就是说不要把幂的乘方与同底数幂的乘法搞混。另一方面掌握基本知识的同时也要学会灵活运用。

乘方教学设计 篇3

教学目标

1.知识与技能

理解幂的乘方的运算性质,进一步体会和巩固幂的意义;通过推理得出幂的乘方的运算性质,并且掌握这个性质.

2.过程与方法

经历一系列探索过程,发展学生的合情推理能力和有条理的表达能力,通过情境教学,培养学生应用能力.

3.情感、态度与价值观

培养学生合作交流意义和探索精神,让学生体会数学的应用价值.

重、难点与关键

1.重点:幂的乘方法则.

2.难点:幂的乘方法则的推导过程及灵活应用.

3.关键:要突破这个难点,在引导这个推导过程时,步步深入,层层引导,?要求对性质深入地理解.

教学方法

采用“探讨、交流、合作”的教学方法,让学生在互动交流中,认识幂的乘方法则.

教学过程

一、创设情境,导入新知

【情境导入】

大家知道太阳,木星和月亮的体积的大致比例吗?我可以告诉你,?木星的半径是地球半径的102倍,太阳的半径是地球半径的103倍,假如地球的半径为r,那么,?请同学

解:设地球的半径为1,则木星的半径就是102,因此,木星的体积为423?·v木星=(10)=?(引入课题).

3 【教师引导】(102)3=?利用幂的意义来推导.

【学生活动】有些同学这时无从下手.

【教师启发】请同学们思考一下a3代表什么?(102)3呢?

【学生回答】a=a×a×a,指3个a相乘.(10)=10×10×10,就变成了同底数幂乘法运算,根据同底数幂乘法运算法则,底数不变,指数相加,10×10×10=10因此(102)3=106.

【教师活动】下面有问题:2222+2+=10,?6利用刚才的推导方法推导下面几个题目:

(1)(a2)3;(2)(24)3;(3)(bn)3;(4)-(x2)2.

【学生活动】推导上面的问题,个别同学上讲台演示.

【教师推进】请同学们根据所推导的几个题目,推导一下(a)的.结果是多少?

【学生活动】归纳总结并进行小组讨论,最后得出结论:

(a)=(am?am???am)?a???n个ammn???m?m?mn个m= amn.

评析:通过问题的提出,再依据“问题推进”所导出的规律,利用乘方的意义和幂的乘法法则,让学生自己主动建构,获取新知:幂的乘方,底数不变,指数相乘.

二、范例学习,应用所学

【例】计算:

(1)(103)5;(2)(b3)4;(3)(xn)3;(4)-(x7)7.

【思路点拨】要充分理解幂的乘方法则,准确地运用幂的乘方法则进行计算.

【教师活动】启发学生共同完成例题.【学生活动】在教师启发下,完成例题的问题:并进一步理解幂的乘方法则:解:(1)(10)=×5=10;(3)(x)=x15n3n×3=x;3n(2)(b3)4=b3×4=b12;(4)-(x7)7=-x7×7=-x49.

三、随堂练习,巩固练习

课本p143练习.

【探研时空】

计算:-x·x·(x)+x.

【教师活动】巡视、关注中等、中下的学生,媒体显示练习题.

【学生活动】书面练习、板演.

四、课堂总结,发展潜能

1.幂的乘方(am)n=amn(m,n都是正整数)使用范围:幂的乘方.方法:底数不变,指数相乘.

2.知识拓展:这里的底数、指数可以是数,可以是字母,?也可以是单项式或多项式.3.幂的乘方法则与同底数幂的乘法法则区别在于,一个是“指数相乘”,?一个是“指数相加”.

五、布置作业,专题突破

课本p148习题15.1第

1、2题.

板书设计

乘方教学设计 篇4

教学目标:

知识与技能:学会用两步乘法计算解决问题。

过程与方法:经历从实际生活中发现问题、提出问题、解决问题的过程,通过合作、交流,寻找解决问题的不同方法。

情感态度价值观:感受数学在生活中的作用,激发学生学习数学的兴趣,培养学生进一步的数学应用意识。

课前准备:

学生明确行、列定义、乘和乘以。课件、红笔1只、每人3张的图片、拍一张浪费粮食的照片。

教学预设:

课前谈话:

(1)自我介绍。我姓周,不是猪。名叫俊杰,识时务者为俊杰。你们叫我什么?我跟你们数学老师有什么不同?今天我给大家上课,你们想说的时候敢不敢说?想笑的时候敢不敢笑?想睡的时候敢不敢睡?

学生做自我介绍,做学校的介绍。

(2)近段时间你们学校都举行了哪些活动?

一、创设情境,探究新知【约18分钟】

1、收集信息

师:你们的.活动真是丰富多彩啊。最近,我们学校也举行了艺术节演出活动,我这里有一张艺术体操队同学表演的图片(课件出示1个方阵的图片)。

(1)猜猜看,这样一个方阵里面可能会有多少人?指名几个猜。

(2)这样猜很盲目,现在我给你提供这样一个信息(课件出示每行有4人),你认为会是多少人?

预设:学生可能会说是4的倍数。你们怎么都猜12、14、20这些数字呢?

预设:因为一行是4人,可能有5行。评价:你真会观察。根据学生回答课件出示文字“一行有4人”,

(3)到底谁猜对了呢?让我们来看一看,现在知道有几人了吗?根据学生回答课件出示“一个方阵有5行”,

师:看来,要想解决问题,必须收集必要的信息。

(4)参加演出的还有2个方阵(课件出示其余2个方阵)。

2、提出问题

问:根据这些信息,你能提出什么数学问题?

预设:3个方阵有多少人?这个问题你能自己解决吗?好的,看要求。

3、探究解决问题的方法

(1)安静独立地思考,想一想能有几种方法解决,把方法写在本子上。有困难的同学可以借助学具摆一摆。

(2)利用学具摆一摆,跟同桌说说你是怎样想的。

4、汇报交流。

(1)派代表上台展示算法,并用学具进行演示。代表先说算式,师板书,再讲思路。

边说思路边用笔在图片上划一划。

(2)谁听懂了他的意思?他的这种方法是先算什么的?你能上来指着图说一说吗?

(3)还有不同的解决办法吗?学生汇报,师同时板书:

①5×4=20(人)②4×3=12(人)③5×3=15(人)

20×3=60(人)12×5=60(人)15×4=60(人)

(4)刚才,我看见有人是这样写的:5×4×3=60(人),可以吗?

5、比较提升。

(1)师:通过刚才的小组交流,我们得出了这样3种方法。(课件出示3种方法)。

(2)观察这三种方法有什么相同和不同?

相同点预设:答案相同,都用乘法计算(揭题)

不同点预设:方法不一样。方法怎么不一样?第一种方法先求什么,再求什么?

评价语:真了不起!,同一个问题,能从不同的角度去思考,采用不同的方法来解决。生活中,像这样要用乘法来解决的问题可多了。

二、联系实际,巩固提高

1、牛奶问题。(不同策略,解决问题)【约7分钟】

学校后勤部运来了一些牛奶给参加演出的同学,其中这一堆是送给参加演出的60名艺术体操队员的,如果每人一瓶,够吗?(课件出示堆成一堆的牛奶)。

(1)师:要解决这个问题,我们首先要查找信息。这里有信息吗?你能用简洁的语言给大家介绍一下这张图片的内容吗?

(2)有了信息,或许能解决这个问题了。请大家在本子上写一写。写完后,再想一想是否还有别的方法。

(3)指名上黑板写一写。

(4)全班交流。

评价语:同学们真棒,同一个问题,不仅能自己收集信息,还能够用不同的方法来解决。

2、浪费问题(选择信息,解决问题)【约7分钟】

(1)演出结束后,在同学们吃中餐的时候,老师在教室门口拍到这样一张浪费粮食的照片(课件出示浪费粮食的图片)。

(2)现在我想知道我们学校一个星期大约浪费多少千克粮食?需要调查哪些信息?

(3)师:好的,我已经收集了下列信息,要解决这个问题,你认为需要用到哪几个信息?

信息:1)共有6个年级。2)共有40个班级。3)每个班级每天大约浪费粮食3千克。4)一个星期有5天在学校就餐。

(4)这3个信息,能解决这个问题吗?

(5)学生独立计算。全班交流,利用计算结果,对学生及时进行节约教育。

评价语:看来提供有价值的信息非常重要,而且同一个问题还可以选择不同的信息来解决。

3、钢笔问题(方法最优化,解决问题)【6分钟】

(1)师:为了杜绝浪费粮食现象,学校准备举行节约资源教育活动,并准备购买钢笔奖励给节约之星,共有40个班级,每个班级有2名节约之星。

大队委员来到文具批发市场后,得到如下信息:

第一家商店:每支8元。

第二家商店:每支9元,如果购买100支或100支以上,每支6元。

(2)让你选择,你会选择到哪家去买?

(3)学生算好了,现场选择。选第一家的举手,选第二家的举手。

(4)全班交流。

评价语:我很欣赏你们,不但能用乘法解决问题,还能根据实际情况,灵活选择最优的方法。

四、课堂总结【约2分钟】

短短的四十分钟过去了,回顾一下,这节课我们做了什么?我们是怎么做的?先是收集信息,提出问题,然后选择有价值的信息,多策略地解决问题。

谢谢你们帮我解决了我们学校这么多的数学问题。我要代表瓯海区实验小学的全体同学欢迎你们到我们学校去做客。今天我们是新朋友,明天我们就是老朋友了。同学们,再见!

板书设计:

用连乘方法解决问题

①5×4=20(人)②4×3=12(人)③5×3=15(人)

20×3=60(人)12×5=60(人)15×4=60(人)

5×4×3=60(人)4×3×5=60(人)5×3×4=60(人)