网站导航
老地方 > 百科 > 教学教案 > 正文

五年级下册能被3整除的数的特征公开课教案

2026/01/16教学教案

老地方整理的五年级下册能被3整除的数的特征公开课教案(精选5篇),希望这些优秀内容,能够帮助到大家。

五年级下册能被3整除的数的特征公开课教案 篇1

教学目标

1、知识目标:掌握能被3整除的数的特征。

2、技能目标:能运用被3整除的数的特征判断一个数能否被3整除。

3、情感目标:培养学生自主探索的能力,合作学习的品质,让学生感受生活中蕴藏着丰富的数学知识。

教学过程:

一、引入的开放(创设情景)

1、游戏入手,请学生说出几个任意多位数,老师不用计算就能很快地说出它是否能被3整除。

2、师生共同验证老师的判断,认为无误后,学生尝试。

3、思考:老师是用什么方法这么快就断定一个数能否被3整除的?

设计意图:采用游戏的形式,引入猜数活动,创设教学情景。使学生带着欢快、带着激情,在和谐、宽松、活跃的开放氛围中,立刻引起好奇性,他们会主动地向老师提出问题:您是用什么方法这么快就能断定一个数能否被3整除的?以致激发了学生强烈的学习情感,使学生兴趣盎然地投入到对知识的探索之中。

二、展开的开放

1、探求知识

①请学生说出能被2、5整除的数的特征,然后让学生大胆猜想:你认为能被3整除的数的特征与个位上的数字有关吗?

(学生各自发表自己的观点)

②让学生说出一些能被3整除的两位数:(按照学生的口答板书)

12、15、18、21、24、27、30、33、36、39、42

议:这些数的个位上数字有特征吗?

(个位上的数字是0、1、2、3每个数字都有)

思考:能被3整除的数的特征,从一个数的个位上的数字来考虑,有可能吗?

③任意写出一个能被3整除的数,如:162

让学生变换数字的`位置,问:你发现了什么?

再把黑板上所列的两位数也调换一下数字,想一想,能不能被3整除?

(被3整除的数,交换数字的排列顺序,仍然能被3整除。)

2、形成共识

①引导:能被3整除的数,与各个数位上数字的和、差、积、商有否关系?

②分组交流,发表观点:

(初步认识能被3整除的数的特征与一个数的各位上数字的和有关)

③用上面的方法判断下面的数能不能被3整除。

54 372 454 837

(判断后,通过演算验证)

④学生看书释疑

议:书上用什么方法推导的?怎样记忆能被3整除的数的特征?

设计意图:因势利导,开放了教学思路,充分重视教师导的作用和学生学的体验。这一阶段以自主探索、合作交流为学生主要的学习方式,让学生通过猜想--验证的探索过程来发现知识,获得结论,并感悟方法,安排了以下三个层次的教学活动:

1、通过学生猜想、举例尝试,使学生产生两次认知冲突;接着通过交换数字的位置,使学生有模糊的认识,但仍然没能发现特征 ,产生第三次认知冲突。

2、通过计算各数位上的数的和、差、积、商,使结论逐渐显露。

3、通过交流,教师点拔,学生自我释疑,形成能被3整除的数的特征 。

三、应用的开放:

1、应用知识:(学生独立完成)

①下面哪些数能被3整除,为什么?

45 51 111 201 437

②写出几个能被3整除的多位数

2、开放提升:

①在下面每个数中的□里填上一个数字,使这个数有约数3。

23□5 127□ 3□6□ 5□□0

②你能写出几个能同时被2、5、3整除的数吗?想一想,有何特征?

③你能去找到能被7、11、13、4、9等数整除的特征吗?

设计意图:练习是对知识的巩固与延伸,直接关系到学生对知识的理解,这一阶段安排了两个层次:

1、主要是为了关注学困生,要求学生运用所学知识,方法及已掌握的规律,解决实际问题,达到巩固知识,形成技能的目的。

2、设计了一些开放性的题目,让学生根据自己的知识水平去完成,特别在互相启发下,使学生思维敏捷,思路开阔,增强了学生学好数学的信心,解决问题的意识和能力得到了明显的提高。

五年级下册能被3整除的数的特征公开课教案 篇2

一、数学目标:

1、学生共同探索并发现能被3整除的数的规律,掌握能被3整除的数的特征。

2、培养学生的发现、概括能力。

二、教学重点:

能判断一个数是否是3的倍数

三、教学难点:

能被3整除的数的特征

四、教学方法:

讨论法、讲解法、练习法、演示法

五、教学工具:

多媒体课件、计算器

讲课

六、教学过程:

a)回顾复习

在上节课我们学习了能被2整除的数的特征和能被5整除的特征,我们总结出了三句话,分别是

(1)2的倍数的特征:各位上是0.2.4.6或8(偶数)

(2)5的倍数的特征:各位上是0或5

(3)既是2的倍数又是5的倍数的特征是: 各位上是0 同学们,你们随便说一个数,老师就能知道,它是不是3的倍数,你们想试~么?大家想不想知道老师为什么这么快就能判断一个数是不是3的倍数?

我们今天就来学习“能被3整除的数的特征”(板书)

首先,同学们要明确一点,我们主要研究的是能被3整除的数,那除数是谁?

之前,我们知道了2的倍数,个位是2的倍数,5的倍数,个位上也是5的倍数。那我们来猜测一下,3的倍数,它个位上是不是也是3的倍数?

我们先来写几个3的倍数的数:3.6.9.12.15.18?(一组)再写几个不是3的倍数的数:2.4.7.8.11.14?(二组)

用计数器演示。(略)

同学们,可以从这两组数中观察一下一二组所用的数珠和又什么规律?

(我们发现了一组的数所用的数珠和恰好是3的倍数,二组所用的数珠和恰好不是3的倍数。)

而这里的数珠和也就是把个、十、百?位上的数字相加,是吗?那我们之前的猜想对吗?

同学们试着判断48是3的倍数吗?你是怎么判断的呢?124呢?321呢?? 那同学们能不能总结一下,到底什么样的.数它就是3的倍数呢? 得出:3的倍数,它各个数位上的数字之和一定是3的倍数。

(1)不计算就能得出下列哪些是有余数的。

48÷3 57÷3 432÷3 567÷3 802÷3

(2)将下列数字送回家。(连线)

32 50 570 891 105

2的倍数 5的倍数 3的倍数

七、玩游戏。

规则:同学们一条龙数数1~100,3的倍数的不能,说3的有惩罚。

八、总结

这节课,我们主要学习了一个内容,而且还总结出了一句话。(它是3的倍数,它各个数上的数字之和一定是3的倍数。)

五年级下册能被3整除的数的特征公开课教案 篇3

教学目标:

1、能说出被3整除的数的特征

2、会判断一个数能否被3整除

3、会填写一个数的某一位上的数,使这个数能被3整除

任务分析:

能被3整除的数的特征是“该数每一位上的数之和能被3整除”,这是一条规则。规则学习的条件是构成规则的有关概念“数位”、“数位上的数”、“求和”、“整除”等已经被学生掌握。

教学过程:

一、复习

教师:

1、练习:下列各数哪些能被2整除?哪些能被5整除?

13 24 75 100 120 46 33 325 2000 4316 8217

2、说说能被2.5整除的数的特征。

学生:(看题自己轻轻说)

3、小结:

教师:判断一个数能否被2.5整除,均有一个共同点:看个位上的数字。

学生:个别汇报

教师(板书):看个位:能被2整除的数的个位是0.2.4.6.8;能被5整除的数的个位是0.5。

二、新授

(一)设疑引入,引起兴趣

1、引入:回到复习题。

教师:现在,我想马上找出能被3整除的数,你能在几秒钟内一下子找出来么?(教师很快说出来,学生将信将疑,让学生对其中4316和8217进行分组笔算验证)。

学生:自己找,分组笔算。

教师:老师怎么能这么快就找出来呢?你想学这个本领吗?今天我们就来学能被3整除的数的特征。

2、揭示课题:能被3整除的数的特征。

提出要求:

(1)知道怎么判断;

(2)会正确判断。

(二)实验操作,做出结论

教师:我们先来完成第一个学习任务。大家先做一个小实验,通过这个实验,看看谁能自己发现被3整除的数的特征。

1、教师:第一次实验:拿出6根小棒。请你拿出计数表,动手在表内用6根小棒任意摆一个数,并计算一下自己摆放的这个数能否被3整除?按“我放的是

,被3整除”说。(教师随机板书,6根以及一、二、三位数)

学生:动手摆小棒,四人交流,大组交流。

2、教师:第二次实验:拿出12根小棒。同样动手在表内用12根小棒放一个数,也计算一下这个数能否被3整除?(教师随机板书,12根以及一、二、三位数)

学生:同桌轻说。

3、教师:第三次实验:拿出5根小棒。再用5根小棒放一个数,计算一下这个数能否被3整除?

学生:自己说。

4、教师:第四次实验:自由摆小棒。请你任意拿出若干根小棒在表内放一个数,一次使自己放的这个数能够被3整除;另一次使自己摆放的这个数不能被3整除。

学生:同桌互说。

5、教师:从刚才的这个实验中,你们发现了什么规律?你是怎么想到这个规律的?请同学讨论后汇报,教师根据学生回答板书。(板书:能被3整除:各个数位上的数的和能被3整除。)

(三)运用结论,验证结果

1、验证:

教师:回到复习题:

(1)请你用这种方法验证一下;

(2)将这两个数的`各个数位上的数相加,看看能否被3整除?其结果是否相同?

4316

8217

学生:自己验证。

2、教师:判断一个数能否被3整除,能不能只看个位数?书上是怎么说的?翻到第47页,看看书上讲的与我们发现的规律是否一致?(自己轻声地读两遍)

学生:看书,读框里文字。

(四)运用规律,学会判断

教师:刚才我们通过实验,自己发现了规律,完成了第一个学习任务。下面我们来完成第二个学习任务:用所发现的方法来判断一个数能否被3整除。

1、练一练:圈出能被3整除的数。

96 72 102 480 7204 8115 925

能否被3整除,主要看什么?

学生:自己完成。

2、巩固练习:

教师:按要求填数

在24 75 120 645 888 1990这些数中,能被3整除的数:

能被2整除的数:

能被5整除的数:

能被3整除的判断方法与能被2.5整除的判断方法有什么不同?(板书)

学生:先自己做,再比较不同。

3、教师:如何能较快地判断和能否被3整除对于有些数有没有什么好方法?

(1)口算:36 996

(2)手势表示:350

(在回答过程中让学生发现只需先去掉3的倍数的数后,再把其他的数相加进行判断的策略可比较快地判别)

学生:口算或手势表示。

4、数字游戏

(1)排数游戏:

教师:用3.4.5三个数排出符合下面条件的三位数,能排出几个就排几个:能被整除;能被5整除;能被3整除。

能被2.5整除,为什么前面两个数可以任意交换?能被3整除,为什么可以排出6个数?

学生:先自己做,边做边记录,再与同桌交流,然后汇报。

(2)填数游戏

教师:在括号里填上适当的数,使这个数能被3整除。集体想:714()

学生:自己想,与同桌交流,讲方法

教师:先交流,再讲方法。

小结:一般先找最小的,再依次递增3。

为什么都能+3?

进一步练习:322();52()1;2()9;47()4

学生:自己完成。

三、下课游戏

师生共同总结。

教师:这节课我们学习了什么?

学生:总结

教师:课已经结束了,可是教师还想和你们玩最后一个游戏,那就是凡是学号满足我的要求的就可以一个一个下课,否则,判断失误,你只能待在这里,求得别人的帮助。

(1)学号能被3整除的;

(2)学号能被2整除的;

(3)学号能被5整除的;

(4)最小的自然数;

(5)所有的奇数。

学生:对号走出教室。

评析:

这是一个典型的以发现法教授规则的教学设计实例。本课要学习的原理是“凡能被3整除的数,其各个数位上的数的和能被3整除”。用这条原理来做事,则要把该原理转化成如下规则:

如果

有若干数,要判断它们是否能被3整除的数,那么

将它们各数位上的数相加,它们的和能否被3整除;

如果

一个数的每个数位上的数之和能被3整除;

那么

可以做出结论:该数是一个能被3整除的数。

对于5年级第二学期的小学生而言,用规-例法教学可以很快完成教学任务。但是本课教师未采用规-例法,而是采用先让学生操作、探究的方法。在探究时,教师先让学生拿6根小棒在数位表上摆出数字,如百位上2根,十位上3根,个位上1根,它们构成的数是231,其和是6,能被3整除,然后用12根小棒在数位表上摆数,摆出来的数的各位上之和也总是能被3整除;然后用5根小棒摆出来的数却不能被3整除。这里实际上设计了要学习的规则的正反例。教师引导学生发现所有正例的共同特征:各个数位上的数之和能被3整除。反例却没有这样的特征。一旦规律被发现之后,应用规则进行判断就不难了。这里的发现都是在教师预先安排的条件下进行的,学生学得生动活泼又不至于花费太多时间。

五年级下册能被3整除的数的特征公开课教案 篇4

教学要求:

使学生初步掌握能被3整除的数的特征,能正确判断一个数能被3整除的数的特征,培养学生抽象、概括的能力。

教学重点:

能被3整除的数的特征。

教学难点:

会判断一个数能否被3整除。

教学过程:

一、创设情境

1、能被2、5整除的数有什么特征?

2、能同时被2和5整除的数有什么特征?

二、揭示课题

我们已经知道了能被2、5整除的数的特征,那么能被3整除的数有什么特征呢?现在我们就来学习和研究能被3整除的数的特征(板书课题)

三、探索研究

1.小组合作学习---能被3整除的数的特征。

(1)思考并回答:

①什么样的数能被3整除?

②要想研究能被3整除的数的特征,应该怎样做?

(2)做法是:(根据学生说的逐一板书)

①②观察:③特征

×3(分组讨论,说发现的规律)一个数的'各位上的数

13把各位上的数加起来看和有什么特征。的和能被3整除,这

26个数就能被3整除。

39

412

515

618

721

824

(3)检验:由学生和老师任意报一个较大的数让学生检验观察它的特征。如:8057921。

因为:8+0+5+7+9+2+1=323+2=55为能被3整除,所以8057921不能被3整除,8057921÷3=2685940......1。

四、课堂实践

1、做教材第55页下面的“做一做”。

2、做练习十二的第5题。

3、做练习十二的第6题。

4、做练习十二的第8题。

①让学生明确这个图所表示的就是判断一个数能否被3整除的顺序和方法。

②让学生按这个顺序和方法判断上面的3个数。

五、课堂小结

学生小结今天学习的内容。

六、思考练习

做练习十二的第7题。

苏教版数学六年级上册教案 能被3整除的数的特征

五年级下册能被3整除的数的特征公开课教案 篇5

五年级下册能被3整除的数的特征公开课教案(精选12篇)

作为一名为他人授业解惑的教育工作者,时常会需要准备好教案,教案是教材及大纲与课堂教学的纽带和桥梁。那么教案应该怎么写才合适呢?以下是小编帮大家整理的五年级下册能被3整除的数的特征公开课教案,欢迎大家分享。