网站导航
老地方 > 百科 > 教学教案 > 正文

《方差》教学反思

2025/09/17教学教案

老地方整理的《方差》教学反思(精选4篇),希望这些优秀内容,能够帮助到大家。

《方差》教学反思 篇1

平方差公式是多项式乘法运算中一个重要的公式,是特殊的多项式与多项式相乘的一种简便计算。通过复习多项式乘以多项式的计算导入新课,为探究新知识奠定基础。在重难点处设计问题:“观察以上3个算式的特点和运算结果的特点,对比等号两边代数式的结构,你发现了什么?”让学生发现规律并尝试运用自己的语言来描述。问题提出后,学生能积极进行分组讨论、交流,各组小组长阐述自己小组讨论的结果。大多数的学生能找出规律,说出大概意思,但是无法用精准的语言完整的描述出来,语言表达无条理、含糊。针对这种情况,在以后的课堂教学过程中要注意加强对学生的逻辑思维能力和语言表达能力的培养。最后经过师生的共同努力,得出了平方差公式以及公式的特征。

在例题展示环节中,我通过2道例题的运算,训练学生正确应用公式进行计算,体会公式在简化运算中的作用。实践练习的设计,使学生从不同角度认识平方差公式,进一步加强学生对公式的理解。在运用公式时,学生基本掌握运用平方差公式的步骤:首先要判断算式是否符合平方差公式特征,然后再寻找算式中的a,b项,最后运用平方差公式运算。拓展延伸环节中,学生通过寻找算式中的`a,b项,慢慢发现a,b项不仅可以代表数,也可以代表单项式、多项式等代数式,这样设计可以进一步深化学生对字母含义的理解。在学生独立完成练习和堂测中,经过巡视,我发现近三分之一的学生对较复杂的多项式不能准确找出a,b项,特别是b项代表多项式时,负数去括号时出错较多。

最后通过设计递进式的问题串,引导学生自己一步步总结出本节课所学的知识内容,从而培养他们的归纳总结和语言表达能力。

本节课采用学习小组讨论、交流的学习方式,让学优生带动学困生,整体教学效果良好,学生基本掌握平方差公式的运用,对于较复杂的a、b项的运算,在自习课上将加强练习。

《方差》教学反思 篇2

《初中数学课程标准》中提出,学生的数学学习应当是一个生动、活泼,富有个性的过程。要让学生经历数学知识的形成过程。明确指出学生的数学学习内容应当是有意义的、富有挑战性的,要有利于学生主动地进行观察、实验、猜想、验证、推理与交流等数学活动。倡导动手实践、自主探索、与合作交流等学习数学的重要方式。

1、教材背景分析:

“方差”属于数学中的概率统计范畴,它的特点是与生产及日常生活中的实际问题紧密联系,对学生统计观念的形成有着举足轻重的作用。本节课是由国家射击队选拔运动员的问题引入的。创设了一个很好的问题情境和统计知识的背景。当学生通过讨论发现用已有的数学知识无法很好解决这个问题时,就会思考该如何从其他角度入手解决问题,这对培养学生的创新意识是十分有好处的。

2、学生背景分析:

学生已经学习了描述一组数据的集中趋势的特征数(平均数、众数、中位数),已经会求平均数、众数、中位数,对它们可以表示数据的集中趋势有所体会。对统计含义有了一定了解。极差和方差是描述数据离散程度的特征数。研究一组数据,通常研究它的集中趋势和离散程度。在这个背景下,复习原有知识,学习新知识,使学生对分析数据的知识和方法形成整体认识。

本节课沿着实际问题的提出、产生方差的必要性、方差公式的探索和推导、方差公式的使用、解决实际问题、巩固练习、总结反思,这样的主线设计的。在探索方差概念之前,创设问题情境,回忆相关概念,明确新的学习方向,提出方差产生的必要性。在探索过程中,辅以学生小组活动、探索实践等活动,始终以学生的学习过程为主体,在学生独立思考和合作交流的基础上有针对性地引导,使学生在学习活动中发现、获得知识,体会数学知识在实际生活中的广泛应用。学习过程中还穿插了一组课堂练习,目的在于及时评价和落实学生的学习成果。

在解决引例问题时,通过对数据的'分析,发现以前学过的统计知识不能解决新问题,引出矛盾。这里设计了小组讨论的环节,让学生在交流中得到启发,进而使学生的思维发生碰撞,产生创新的火花,真正体现“不同的人,在数学上得到不同的发展”。本节课的重点是方差公式的推导。当平均水平相同时,就要分析数据的稳定性。而画折线图是学生比较熟悉的能直观的反映数据波动大小的方法,因此在这个环节设计了让学生动手画图实践,锻炼了学生画图的能力,从中体会画折线图是描述数据波动大小的一种方法,进而引出如何用数值表示一组数据的波动。再推到过程中关键是怎么解决“正负抵消”的问题。求平均数的方法是学生比较熟悉的方法。我向学生完整地展示了利用平均差衡量数据波动大小的方法。进一步引导学生得出用平方的方法解决非负的问题。层层设疑,步步推进,教师和学生一起解决问题,确定知识点,使学生在一次次的解决问题中体会方差概念的发生发展形成过程。

在教学处理中层层设疑,步步推进的设置问题。引导学生探索知识的形成过程比较成功,给学生搭建了比较广阔的思维平台。

在推导方差公式时,将问题细化,设置了四个问题:

1、用数值怎样表示一次成绩偏离平均数的程度?

2、怎样表示10次成绩偏离平均数的程度?

3、平均水平之上的数减去平均数是正数,平均水平以下的数减去平均数是负数。直接相加就会“正负抵消”,和为0、为了避免“正负抵消”的问题怎么办?

4、如果两组数据不一样多,怎么解决数据个数的影响?

使学生的思维活动得到了充分的展示。另外利用媒体解决大量的计算问题,为推导公式,解决重点赢得了时间,感觉效果也不错。

通过这节课的教学,让我深刻的体会到只要我们充分相信学生,给学生以最大的自主探索空间,让学生经历数学知识的探究过程,这样既能让学生自主获取数学知识与技能,而且还能让学生达到对知识的深层次理解,更主要的是能让学生在探究过程中学习科学研究的方法,从而增强学生的自主意识,培养学生的探索精神和创新思维。

《方差》教学反思 篇3

指导学生用语言描述,两数和与两数差的积等于它们的平方差。这个公式叫做平方差公式。

指导学生发现公式的特点:

1、左边为两数的和乘以两数的差,即在左边是两个二项式的积,在这两个二项式中有一项(a)完全相同,另一项(b与-b)互为相反数。右边为这两个数的平方差即完全相同的项的平方减去符号相反的平方。

2、公式中的a,b不仅可以表示具体的数字,还可以是单项式,多项式等代数式。

提醒学生利用平方公式计算,首先观察是否符合公式的特点,这两个数分别是什么,其次要区别相同的项和相反的.项,表示两数平方差时要加括号。

平方差公式(a-b)(a+b)=a2-b2它是特殊的整式的乘法,运用这一公式可以迅速而简捷地计算出符合公式的特征的多项式乘法的结果,运用公式计算一定要看是否符合公式的特征,这两个数分别是什么,公式中的字母a,b仅可以代表具体的数字,字母,单项式,也可以代表多项式

《方差》教学反思 篇4

平方差公式本节课的重点是要学生明白平方差公式及其推导(含代数验证和几何验证),并能应用平方差公式简化运算,其中关键是要学生明确平方差公式的结构特征,准确找到a、b。为了让学生对平方差公式有个全面的认识和了解。先让学生计算符合平方差公式的两位数乘法,进而将数转化为字母,从代数的角度,利用多项式乘多项式的知识,推导出平方差公式,接着从几何角度让学生加以解释说明。在此基础上,通过分析公式的结构特征,加深对公式的理解。之后,设计了一个“寻找a、b”的环节,通过这个练习进行难点突破。引导学生反思练习过程,得出“谁是a,谁是b,并不以先后为准,而是以符号为准”这一结论。紧接着给出两组例题,考察学生对公式的应用。最后通过一组判断题和补充练习,拓展学生的思维水平。

为了给学生渗透数形结合的思想,要从代数、几何两个角度证明平方差公式,但是从哪个角度入手,有利于知识的衔接,便于学生理解。最终决定给让学生猜想结论,再用代数方法加以证明,后给出几何解释,符合知识的`发生过程。

对于课本中的公式文字说明是“两数和与这两数差的积”的理解:公式中“a、b不仅表示一个数或字母,还可以表示代数式”。但这里说的是“两数”,原因是所有的规律最初都是在具体的数字中发现的,然后才推广到字母。所以这里说的数不再是具体的数,而是代表一个整体;公式中说的“两数和与两数差的积”,从这个角度说,这两项应是完全相同的,差别只在于运算符号上。但由于我们之前介绍过“代数和”,(a+ b)(a-b)也可以理解为(a+ b)[a(-b)],就像许多教参上说的,是相同项与互为相反数的项,这样就与课本定义发生矛盾。为了避免这个问题,我在介绍公式结构特征时,只说“有一项完全相同,另一项只有符号不同”,学生可以自己去理解。