网站导航
老地方 > 百科 > 教学教案 > 正文

二次根式教学设计

2025/10/01教学教案

老地方整理的二次根式教学设计(精选4篇),希望这些优秀内容,能够帮助到大家。

二次根式教学设计 篇1

1、通过二次根式混合运算的学习,进一步了解二次根式运算法则,知道二次根式混合运算顺序,会进行二次根式的混合运算。

2、在进行二次根式混合运算的过程中,体会类比思想,逐步养成认真仔细的学习品质,进一步提高运算能力。

教学重点:二次根式混合运算算理的理解。

教学难点:类比整式运算准确快速的进行二次根式的混合运算。

教学过程:

一、情境诱导

《二次根式混合运算习题课》教学设计-杨桂花

二、练习指导

(学生完成练习提纲,可以讨论,老师做必要的'板书准备,然后巡回指导,了解情况、)

练习提纲:《二次根式混合运算习题课》教学设计-杨桂花

三、展示归纳

1、学生汇报解题过程,生说师写;

2、发动其他学生评价补充完善;

3、师画龙点睛强调:

(1)二次根式混合运算的运算顺序跟有理数运算顺序一样,先乘方,再乘除,最后加减。

(2)二次根式混合运算与整式的运算有很多相似之处,因此可类比整式的运算进行二次根式的混合运算。

四、变式练习

(先让学生独立完成,老师做必要的板书准备后巡回指导,了解情况; 然后让有一定问题的学生汇报展示,发动学生评价完善,老师强调关键地方,总结思想方法。)

《二次根式混合运算习题课》教学设计-杨桂花

五、小结

本节课你有哪些收获?还有什么要提醒同学们注意的。(学生总结,百花齐放,老师不做限定,没说到的,老师补充。)

六、布置作业

《二次根式混合运算习题课》教学设计-杨桂花

二次根式教学设计 篇2

1.能用二次根式表示实际问题中的数量及数量关系,体会研究二次根式的必要性;(难点)

2.能根据算术平方根的意义了解二次根式的概念及性质,会求二次根式中被开方数中字母的取值范围.(重点)

一、情境导入

问题1:你能用带有根号的式子填空吗?

(1)面积为3的正方形的边长为________,面积为S的正方形的边长为________.

(2)一个长方形围栏,长是宽的2倍,面积为130m2,则它的宽为________m.

(3)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与落下的高度h(单位:m)满足关系h=5t2,如果用含有h的式子表示t,则t=______.

问题2:上面得到的式子,,,分别表示什么意义?它们有什么共同特征?

二、合作探究

探究点一:二次根式的定义

下列各式中,哪些是二次根式,哪些不是二次根式?

(1);(2);(3);

(4);(5);(6)(x≤3);

(7)(x≥0);(8);(9);

(10)(ab≥0).

解析:要判断一个根式是不是二次根式,一是看根指数是不是2,二是看被开方数是不是非负数.

解:因为,,=,(x≤3),,(ab≥0)中的根指数都是2,且被开方数为非负数,所以都是二次根式.的根指数不是2,,(x≥0),的被开方数小于0,所以不是二次根式.

方法总结:判断一个式子是不是二次根式,要看所给的式子是否具备以下条件:(1)带二次根号“”;(2)被开方数是非负数.

探究点二:二次根式有意义的条件

【类型一】 根据二次根式有意义求字母的取值范围

求使下列式子有意义的x的取值范围.

(1);(2);(3).

解析:根据二次根式的性质和分式的意义,被开方数大于或等于0且分母不等于0,列不等式(组)求解.

解:(1)由题意得4-3x>0,解得x<.当x<时,有意义;

(2)由题意得解得x≤3且x≠2.当x≤3且x≠2时,有意义;

(3)由题意得解得x≥-5且x≠0.当x≥-5且x≠0时,有意义.

方法总结:含二次根式的式子有意义的条件:

(1)如果一个式子中含有多个二次根式,那么它们有意义的条件是各个二次根式中的被开方数都必须是非负数;(2)如果所给式子中含有分母,则除了保证二次根式中的被开方数为非负数外,还必须保证分母不为零.

【类型二】 利用二次根式的非负性求解

(1)已知a、b满足+|b-|=0,解关于x的方程(a+2)x+b2=a-1;

(2)已知x、y都是实数,且y=++4,求yx的平方根.

解析:(1)根据二次根式的非负性和绝对值的非负性求解即可;(2)根据二次根式的非负性即可求得x的值,进而求得y的值,进而可求出yx的平方根.

解:(1)根据题意得解得则(a+2)x+b2=a-1,即-2x+3=-5,解得x=4;

(2)根据题意得解得x=3.则y=4,故yx=43=64,±=±8,∴yx的平方根为±8.

方法总结:二次根式和绝对值都具有非负性,几个非负数的和为0,这几个非负数都为0.

探究点三:和二次根式有关的规律探究性问题

先观察下列等式,再回答下列问题.

①=1+-=1;

②=1+-=1;

③=1+-=1.

(1)请你根据上面三个等式提供的信息,写出的结果;

(2)请你按照上面各等式反映的规律,试写出用

含n的式子表示的等式(n为正整数).

解析:(1)从三个等式中可以发现,等号右边第一个加数都是1,第二个加数是个分数,设分母为n,第三个分数的.分母就是n+1,结果是一个带分数,整数部分是1,分数部分的分子也是1,分母是前项分数的分母的积;(2)根据(1)找的规律写出表示这个规律的式子.

解:(1)=1+-=1;

(2)=1+-=1(n为正整数).

方法总结:解答规律探究性问题,都要通过仔细观察找出字母和数之间的关系,通过阅读找出题目隐含条件并用关系式表示出来.

三、板书设计

1.二次根式的定义

一般地,我们把形如(a≥0)的式子叫做二次根式.

2.二次根式有意义的条件

被开方数(式)为非负数;有意义?a≥0.

通过将新知识与旧知识进行联系与对比,随后由学生熟悉的实际问题出发,用已有的知识进行探究,由此引入二次根式.在教学过程中让学生感受到研究二次根式是实际的需要,体会到数学与实际生活间的紧密联系,以此充分激发学生学习的兴趣.

二次根式教学设计

《二次根式》教学反思

二次根式教学设计 篇3

1教学目标

(1)利用归纳类比的方法得出二次根式的除法法则和商的算术平方根的性质;

(2)会进行简单的二次根式的除法运算;

(3) 理解最简二次根式的概念

2学情分析

本节内容主要是在做二次根式的除法运算时,分母含根号的处理方式上,学生可能会出现困难或容易失误,在除法运算中,可以先计算后利用商的算术平方根的性质来进行,也可以先利用分式的性质,去掉分母中的根号,再结合乘法法则和积的算术平方根的性质来进行。二次根式的除法与分式的运算类似,如果分子、分母中含有相同的因式,可以直接约去,以简化运算。教学中不能只是列举题型,应以各级各类习题为载体,引导学生把握运算过程,估计运算结果,明确运算方向。

3重点难点

重点:二次根式的乘法法则与积的算术平方根的性质.

难点:二次根式的除法法则与商的算术平方根的性质之间的关系和应用。

4教学过程

4。1 第一学时

教学活动

活动1【导入】复习提问,探究规律

问题1 二次根式的乘法法则是什么内容?化简二次根式的一般步骤怎样?

师生活动 学生回答。

【设计意图】让学生回忆探究乘法法则的过程,类比该过程,学生可以探究除法法则.

2.观察思考,理解法则

问题2 教材第8页“探究”栏目,计算结果如何?有何规律?

师生活动 学生回答,给出正确答案后,教师引导学生思考,并总结二次根式除法法则:。

问题3 对比乘法法则里字母的取值范围,除法法则里字母的取值范围有何变化?

师生活动 学生思考,回答。学生能说明根据分数的意义知道,分母不为零就可以了。

【设计意图】学生通过自主探究,采用类比的方法,得出二次根式的除法法则后,要明确字母的取值范围,以免在处理更为复杂的二次根式的运算时出现错误。

问题4 对例题的运算你有什么看法?是如何进行的?

师生活动 学生利用法则直接运算,一般根号下不含分母和开得尽方的因数。

【设计意图】让学生初步利用二次根式的性质、乘除法法则进行简单的运算。

问题5 对比积的算术平方根的性质,商的算术平方根有没有类似性质?

师生活动 学生类比地发现,商的算术平方根等于算术平方根的商,即 。利用该性质可以进行二次根式的化简。

活动2【讲授】观察思考,理解法则

问题2 教材第8页“探究”栏目,计算结果如何?有何规律?

师生活动 学生回答,给出正确答案后,教师引导学生思考,并总结二次根式除法法则:。

问题3 对比乘法法则里字母的取值范围,除法法则里字母的取值范围有何变化?

师生活动 学生思考,回答。学生能说明根据分数的意义知道,分母不为零就可以了。

【设计意图】学生通过自主探究,采用类比的方法,得出二次根式的除法法则后,要明确字母的取值范围,以免在处理更为复杂的二次根式的运算时出现错误。

问题4 对例题的运算你有什么看法?是如何进行的?

师生活动 学生利用法则直接运算,一般根号下不含分母和开得尽方的因数。

【设计意图】让学生初步利用二次根式的性质、乘除法法则进行简单的运算。

问题5 对比积的算术平方根的性质,商的.算术平方根有没有类似性质?

师生活动 学生类比地发现,商的算术平方根等于算术平方根的商,即 。利用该性质可以进行二次根式的化简。

活动3【活动】例题示范,学会应用

例1 计算: (1) ; (2) ; (3) 。

师生活动 提问:你有几种方法去掉分母中的根号?去分母的依据分别是什么?

再提问:第(2)用什么方法计算更简捷?第(3)题根号下含字母在移出根号时应注意什么?

【设计意图】通过具体问题,让学生在实际运算中培养运算能力,训练运算技能,

问题5 你能从例题的解答过程中,总结一下二次根式的运算结果有什么特征吗?

师生活动 学生总结,师生共同补充、完善。要总结出:

(1)这些根式的被开方数都不含分母;

(2)被开方数中不含能开得尽方的因数或因式;

(3)分母中不含根号;

【设计意图】引导学生及时总结,提出最简二次根式的概念,要强调,在二次根式的运算中,一般要把最后结果化为最简二次根式。

问题6 课件展示一组二次根式的计算、化简题。

【设计意图】让学生用总结出的结论进行二次根式的运算。

活动4【练习】巩固概念,学以致用

例2 教材第9页例7。

师生活动 提问 本题是以长方形面积为背景的数学问题,二次根式的除法运算在此发挥什么作用?

再提问 章引言中的问题现在能解决了吗?

【设计意图】巩固性练习,同时培养学生应用二次根式的乘除运算法则解决实际问题的能力。

活动5【测试】目标检测设计

1.在 、 、 中,最简二次根式为 。

【设计意图】考查对最简二次根式的概念的理解。

2.化简下列各式为最简二次根式: ; 。

【设计意图】复习二次根式的运算法则和运算性质。鼓励学生用不同方法进行计算。对于分母含二次根式的处理,要结合整式的乘法公式进行计算。

3.化简:(1) ; (2) 。

【设计意图】综合运用二次根式的概念、性质和运算法则进行二次根式的运算。

活动6【作业】布置作业

教科书第10页练习第1,2,3题;

教科书习题16。2第10,11题。

二次根式教学设计 篇4

教学目的

1.使学生掌握最简二次根式的定义,并会应用此定义判断一个根式是否为最简二次根式;

2.会运用积和商的算术平方根的性质,把一个二次根式化为最简二次根式。

教学重点

最简二次根式的定义。

教学难点

一个二次根式化成最简二次根式的方法。

教学过程

一、复习引入

1.把下列各根式化简,并说出化简的根据:

2.引导学生观察考虑:

化简前后的根式,被开方数有什么不同?

化简前的被开方数有分数,分式;化简后的被开方数都是整数或整式,且被开方数中开得尽方的'因数或因式,被移到根号外。

3.启发学生回答:

二次根式,请同学们考虑一下被开方数符合什么条件的二次根式叫做最简二次根式?

二、讲解新课

1.总结学生回答的内容后,给出最简二次根式定义:

满足下列两个条件的二次根式叫做最简二次根式:

(1)被开方数的因数是整数,因式是整式;

(2)被开方数中不含能开得尽的因数或因式。

最简二次根式定义中第(1)条说明被开方数不含有分母;分母是1的例外。第(2)条说明被开方数中每个因式的指数小于2;特别注意被开方数应化为因式连乘积的形式。

2.练习:

下列各根式是否为最简二次根式,不是最简二次根式的说明原因:

3.例题:

例1 把下列各式化成最简二次根式:

例2 把下列各式化成最简二次根式:

4.总结

把二次根式化成最简二次根式的根据是什么?应用了什么方法?

当被开方数为整数或整式时,把被开方数进行因数或因式分解,根据积的算术平方根的性质,把开得尽方的因数或因式用它的算术平方根代替移到根号外面去。

当被开方数是分数或分式时,根据分式的基本性质和商的算术平方根的性质化去分母。

此方法是先根据分式的基本性质把被开方数的分母化成能开得尽方的因式,然后分子、分母再分别化简。

三、巩固练习

1.把下列各式化成最简二次根式:

2.判断下列各根式,哪些是最简二次根式?哪些不是最简二次根式?如果不是,把它化成最简二次根式。