《直线和圆的位置关系》教学设计
老地方整理的《直线和圆的位置关系》教学设计(精选4篇),希望这些优秀内容,能够帮助到大家。
《直线和圆的位置关系》教学设计 篇1
教学目标:
1、探索并掌握直线与圆的位置关系。
2、使学生从运动的观点来观察直线和圆相交、相切、相离的关系、培养学生的辩证唯物主义观点。
3、了解转化,分类讨论的数学思想方法,提高解决实际问题的能力。
教学重点:
直线和圆的位置关系的判定方法和性质。
教学难点:
直线和圆的三种位置关系的研究及运用。
教法建议:
在教学中,以“形”归纳“数”,以“数”判断“形”为主线,开展在教师组织下,以学生为主体,活动式教学。
教学过程:
复习提问:
1、点与圆有几种位置关系?它们如何表示?
2、过三点一定能画圆吗?外心一定在三角形内吗?
导入新课:先观察太阳升起的过程,地平线与太阳有哪几种位置关系?
根据此现象探究直线与圆又有哪几种位置关系?如图所示:
问题
1、公共点有几个?
2、圆心与直线的距离与半径进行比较。
归纳:(引导学生完成)
(1)直线与圆有两个公共点;
(2)直线和圆有唯一公共点;
(3)直线和圆没有公共点.
概念:(指导学生完成)
由直线与圆的公共点的个数,得出以下直线和圆的三种位置关系:
(1)相交:直线与圆有两个公共点时,叫做直线和圆相交。这时直线叫做圆的割线。
(2)相切:直线和圆有唯一公共点时,叫做直线和圆相切。这时直线叫做圆的切线,唯一的`公共点叫做切点。
(3)相离:直线和圆没有公共点时,叫做直线和圆相离。
研究与理解:
①直线与圆有唯一公共点的含义是“有且仅有”,这与直线与圆有一个公共点的含义不同。
②直线和圆除了上述三种位置关系外,有第四种关系吗?即一条直线和圆的公共点能否多于两个?为什么?
《直线和圆的位置关系》教学设计 篇2
教学目标:
(一)教学知识点:
1.了解直线与圆的三种位置关系。
2.了解圆的切线的概念。
3.掌握直线与圆位置关系的性质。
(二)过程目标:
1.通过多媒体让学生可以更直观地理解直线与圆的位置关系。
2.通过让学生发现与探究来使学生更加深刻地理解知识。
(三)感情目标:
1.通过图形可以增强学生的感观能力。
2.让学生说出解题思路提高学生的语言表达能力。教学重点:直线与圆的位置关系的性质及判定。
教学难点:
有无进入暗礁区这题要求学生将实际问题转化为直线与圆的位置关系的判定,有一定难度,是难点。
教学过程:
一、创设情境,引入新课
请同学们看一看,想一想日出是怎么样的?屏幕上出现动态地模拟日出的情形。(把太阳看做圆,把海平线看做直线。)师:你发现了什么?
(希望学生说出直线与圆有三种不同的位置关系,如果学生没有说到这里,我可以直接问学生,你觉得直线与圆有几种不同的位置关系。)让学生在本子上画出直线与圆三种不同的位置图。(如图)师:你又发现了什么?(希望学生回答出有第一个图直线与圆没有公共点,第二个图有一个公共点,而第三个有两个公共点,如果没有学生没有发现到这里,我可以引导学生做答)
二、讨论知识,得出性质
请同学们想一想:如果已知直线l与圆的位置关系分别是相离、相切、相交时,圆心O到直线l的距离d与圆的半径r有什么关系
设圆心到直线的距离为d,圆的半径为r让学生讨论之后再与学生一起总结出:当直线与圆的位置关系是相离时,dr当直线与圆的位置关系是相切时,d=r当直线与圆的位置关系是相交时,d知识梳理:
直线与圆的位置关系图形公共点d与r的大小关系相离没有r相切一个d=r相交两个d
三、做做练习,巩固知识抢答,我能行活动:
1、已知圆的直径为13cm,如果直线和圆心的距离分别为(1)d= (2)d= (3)d=8cm,那么直线和圆有几个公共点?为什么?(让个别学生答题)师:第一题是已知d与r问直线与圆之间的位置关系,而下面这题是已知d与位置关系求r,那又该如何做呢?请大家思考后作答:
2、已知圆心和直线的'距离为4cm,如果圆和直线的关系分别为以下情况,那么圆的半径应分别取怎样的值?
(1)相交;
(2)相切;
(3)相离。
师:前面两题中直接告诉了我们是直线的问题,而下面的这题是在三角形中解决直线与圆的位置关系,看题:考考你。
3.在Rt△ABC中,C=900,AC=3cm,BC=4cm。
(1)以A为圆心,3cm为半径的圆与直线BC的位置关系是以A为圆心,2cm为半径的圆与直线BC的位置关系是以A为圆心,为半径的圆与直线BC的位置关系是.师:同样地第一题是已知d与r问直线与圆之间的位置关系,而下面这题是已知d与位置关系求r,那又该如何做呢?
(2)以C为圆心,半径r为何值时,⊙C与直线AB相切?相离?相交?
第3页(请同学们思考讨论后,再请个别同学说出答案) 总结:作题时要找出d与r中哪些量在变化,而哪些没有变化的。
比如日出就是r没有变化而d发生了变化。不管哪些变了,哪些没有变,总之d,r和位置关系中,已经两个都可以求第三个量。
四、联系现实,解决实际
在码头A的北偏东60方向有一个海岛,离该岛中心P的15海里范围内是一个暗礁区。货船从码头A由西向东方向航行,行驶了18海里到达B,这时岛中心P在北偏东30方向。若货船不改变航向,问货船会不会进入暗礁区?让学生完整解答。
五、归纳总结,形成体系师:这节课你有何收获?请个别学生回顾知识,教师再总结完整。
六、布置作业,课后巩固分层作业:
1.基础题:作业本(2)P21;
2.自选题:如图,一热带风暴中心O距A岛为2千米,风暴影响圈的半径为1千米.有一条船从A岛出发沿AB方向航行,问BAO的度数是多少时船就会进入风暴影响圈?
《直线和圆的位置关系》教学设计 篇3
《直线和圆的位置关系》教学设计(通用10篇)
作为一名老师,往往需要进行教学设计编写工作,教学设计把教学各要素看成一个系统,分析教学问题和需求,确立解决的程序纲要,使教学效果最优化。那么应当如何写教学设计呢?以下是小编收集整理的《直线和圆的位置关系》教学设计,欢迎阅读,希望大家能够喜欢。
《直线和圆的位置关系》教学设计 篇4
一、教材分析
教材的地位和作用。
圆在平面几何中占有重要地位,它被安排在初中数学第二十四章,属于一个提高阶段。而直线和圆的位置关系又是本章的一个中心内容。从知识体系上看:它有着承上启下的作用,既是对点与圆的位置关系的延续与提高,又是后面学习切线的性质和判定、圆和圆的位置关系及高中继续学习几何知识的基础。从数学思想方法层面上看:它运用运动变化的观点揭示了知识的发生过程以及相关知识间的内在联系,渗透了数形结合、分类讨论、类比等数学思想方法,有助于提高学生的数学思维品质。
二、学情分析
在此之前学生已经学习了点和圆的位置关系,对圆有了一定的感性和理性认识,但在某种程度上特别是平面几何问题上,学生还是依靠事物的具体直观形象。加之九年级学生好奇心强,活泼好动,注意力易分散,认知水平大都停留在表面现象,对亲身体验的事物容易激发求知的渴望,因此要想方设法,引导学生深入思考、主动探究、主动获取新知识。
三、教学目标:
根据学生已有的认知基础及本课的教材的地位、作用,结合数学课程标准我将确定如下的教学目标:
(1)掌握直线和圆的三种位置关系性质及判定。
(2)通过观察、实验、合作交流等数学活动使学生了解探索问题的一般方法;
(3)通过直线和圆的位置关系的探究,向学生渗透分类讨论、数形结合、类比的数学思想,培养学生观察、分析和概括的能力;
(4)体会事物间的相互渗透,感受数学思维的严谨性,并在合作学习中体验成功的喜悦。
教学的重难点:
重点:直线和圆的三种位置关系的性质与判定。
难点:用数量法刻画直线与圆的三种位置关系。
突破难点的策略:引导学生动手动脑、操作实践,类比点和圆的位置关系的判定方法,配合几何画板直观演示来加深学生对知识的理解。
四、学法教法
教无定法,教学有法,贵在得法。根据新课改理念及学生特点,本节课主要采用“启发式”问题教学法,根据维果斯基的“最近发展区理论”,站在学生思维的最近发展区上启发诱导,用环环相扣的问题将探究活动层层深入;整堂课紧紧围绕“情景问题——学生体验——合作交流”的学习模式展开,并充分发挥几何画板、多媒体课件直观、形象的功能辅助教学,激励学生积极参与、观察、发现其知识的内在联系,使每个学生都能积极思维。
五、教学过程
(1)创设情境,引出课题(3分钟)
从学生的生活经验和已有知识出发,创设情境。通过多媒体课件展示《海上日出》的朗诵视频,让学生观察并抽象出其中的几何图形(直线和圆),营造探索问题的氛围,从而引出课题(直线和圆的位置关系)。同时让学生体会到数学知识无处不在,应用数学无处不有,符合“数学教学应从生活经验出发”的新课标要求。
(2)动手操作探求新知(20分钟)
a.学生动手实验——探究位置关系得出概念
美国学者说过:听过的会忘记,看过的会记得,做过的能学会。可见实验法在教学中有着何等重要的作用。从这一思想出发,我设计了一个动手操作的环节:让学生在纸上画一条直线,把课前准备好的圆卡片,在纸上移动,再现日出的整个过程,并归纳其公共点的`个数变化情况。然后提出问题:你能由此归纳出直线和圆有几种不同的位置关系吗?你是怎样区分这几种位置关系的?如何用语言描述位置关系?教师层层设问,让学生思维自然发展,教学有序的进入实质部分。由于动手操作环节的铺垫,学生很容易能够从公共点个数的变化情况对直线和圆的位置关系进行分类。通过学生演示归纳,师生共同得出有关概念。
教师板书讲解内容并总结:
可利用直线与圆的交点个数判断直线与圆的三种位置关系。特别强调相切中“只有一个交点”的含义。
b.讲练结合——运用定义法、引出数量法
在学习了直线和圆的位置关系后,学生自然就得到了直线和圆的位置关系的第一种判定方法:定义法,这种方法对学生而言比较直观简单,因此教材上没有相应的练习。于是我设计了一道练习题:在练习中让学生发现用定义法来判断直线和圆的位置关系的局限性,当公共点个数不好判断时又该怎么办呢?你能类比之前所学的点和圆的位置关系的判定方法加以说明吗?从而引出用数量关系刻画直线和圆的位置关系的学习。
c.类比总结——探究第二种判定方法
由点与圆的位置关系的性质与判定,类比迁移到直线与圆的位置关系,学生较容易想到画图、测量等实验方法,小组交流合作,教师适时指导,再利用几何画板重复演示得出结论:
①d>r,直线L和⊙O相离;
②d=r,直线L和⊙O相切;
③d<r,直线L和⊙O相交,也就是用圆心到直线的距离d与半径r的大小关系来判定直线和圆三种位置关系,并强调:既是性质也是判定。
在动手操作,探索新知的过程中,让学生参与到定义的形成与给出过程中,在练习中发现定义法的局限性,从而引出对数量法的学习,让学生类比点和圆的位置关系的判定,验证直线和圆的位置关系,更加直接而自然,有效的突破教学难点,也让学生感受到所学知识间的相互联系。
(3)巩固练习,提高能力(10分钟)
为得到及时的反馈情况,我设计了如下的练习,而这个时段的学生因疲劳,注意力易分散,我抓住学生的好胜心理,首先设计了一道填空题:看谁抢得快
1、(P96练习)已知圆的直径为13cm,设直线和圆心的距离为d:
1)若d=4.5cm,则直线和圆,直线和圆有____个公共点;
2)若d=6.5cm,则直线和圆______,直线和圆有____个公共点;
3)若d=8cm,则直线和圆______,直线和圆有____个公共点。
这道题同时运用了数量法和定义法的判定,解题关键是要引导学生找出d与r并进行比较,从中体现数学中的转化思想。
2、Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,判断以点C为圆心,下列r为半径的⊙C与AB的位置关系:
(1)r=2cm;
(2)r=2.4cm;
(3)r=3cm。(P101习题24.2第2题)
3、在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r为半径的圆
(1)当圆C与线段AB相交时,r;
(2)当圆C与线段AB相切时,r;
(3)当圆C与线段AB相离时,r;
解题关键是要引导学生找出这两个问题的不同与联系,再进行求解。通过这两个题可以培养学生解决变式问题的能力。教师引导学生完成,加强个别指导。
(本环节的练习难度层层加大,其目的是让学生加强对新知的理解和应用,培养学生解决问题的能力;基础题目和变式题目的结合既面向全体学生,也考虑到了学有余力的学生的学习,体现了因材施教的教学原则。)
(4)课堂小结构建体系(5分钟)
本节课你有哪些收获?你还有哪些疑惑?
(通过提问方式进行小结,交流收获与不足,让学生养成学习-总结—再学习的良好学习习惯。
教师再总结:
这节课我们学习了三种位置关系、两种判定方法、三种思想,有利于帮助学生理清知识脉络,巩固学习效果。3、2、3)
(5)作业布置课后延伸(2分钟)
必做题:
1.阅读教材100-101
2.P112练习2
选做题:如图,已知∠AOB=β(β为锐角),M为OB上一点,且OM=5cm,以M为圆心、以
2.5为半径作圆
(1)⊙M与直线OA的位置关系由大小决定;
(2)若⊙M与直线OA相切,则β=;
(3)若⊙M与直线OA相交,则β的取值范围是。
网站导航